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Abstract 

Each year, many single-crystal structure analyses are re- 
ported that show evidence of over- or under-refinement. 
Often, the refinement strategies have been naive or over- 
complex and alternative strategies might have been more 
effective. The many descriptions of crystallographic and 
numerical techniques suitable for assisting with the con- 
trol of difficult refinements are distributed widely in 
the literature and so are not always easily accessible. 
Without being a review of these procedures (which 
would require a substantial book), this article attempts 
to list readily available procedures, together with a 
brief outline of their backgrounds and examples of their 
applications to organic and organometallic compounds. 
The analysis of extended-lattice materials (usually in- 
organic materials) often raises problems in addition to 
those covered here. The particular aim of this article 
is to remind the reader that X-ray structure analysis is 
a modelling process and that, while standard models 
may be adequate for most analyses, more care and 
imagination must be applied to the treatment of diffi- 
cult cases. Principles of methods are described without 
detailed mathematical derivations, although sufficient 
references to the literature are provided to permit careful 
study. Future requirements for refinement processes are 
outlined, including the use of new machine architectures, 
applications of sparse-matrix methods and the develop- 
ment of expert systems. 
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Introduction 

The determination of small and medium-sized structures 
(of, say, less than 200 atoms) by single-crystal X-ray 
methods is on the verge of becoming a routine analytical 
tool. Commercial diffractometers are robust and reliable 
and are equipped with software packages that permit a 
scientist with scant formal training in crystallography 
to solve 80% of the structures he examines. A little 
experience and perhaps tries with alternative direct- 
methods programs may increase the success rate. 

Sadly, this very success of semi-automatic systems 
has carded with it the seeds of a new problem, which 
has blossomed as a growing number of structures are 
published that are, if not actually incorrect, not the best 
that could have been made of the data. In addition, 
we have no way of knowing how many data sets 
are abandoned because the structures do not resolve 
easily and to a publishable conclusion. We now have 
the delicate situation in which harsh refereeing by one 
journal may lead to analyses being tucked into footnotes 
in other journals, where the crystallography is not closely 
refereed. These substandard analyses still find their way 
into databases, where they become indistinguishable 
from reliable work. 

There is a risk that an article like this will only be read 
by scientists already keen to do first-rate work and so 
not reach those workers beguiled into believing that all 
the problems of structure refinement have been resolved. 
Even so, it is probably worth cataloguing some of the 
techniques that can turn a 'fair' structure analysis into 
a 'good' one. Often, all that are required are curiosity, 
patience and experience. Sadly, computers lack two of 
these attributes and the final responsibility still lies with 
the analyst. 

In structure analysis, there are a number of main 
phases where user decisions have to be made: choosing 
the crystal, determining the space group, ascertaining 
that the direct or Patterson methods have yielded a valid 
structure and ensuring that the refinement has yielded 
optimal parameter estimates. 

Phase one, choosing the crystals and collecting the 
diffraction data, usually requires no extraordinary skills 
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of the analyst, yet is often done badly in the haste to get 
a data set. This haste can lead to wasted time later. 

The software provided by most diffractometer manu- 
facturers (together with the high natural frequencies of 
occurrence of certain space groups) are a great aid in 
phase two, though Baur & Tilimanns (1986) give an en- 
joyable and informative account of published problem- 
atic cases. Space-group determination can sometimes, 
however, be a subtle and uncertain process, requiting 
cunning and experience to achieve an acceptable solu- 
tion. 

Phase three can often be completed by simple in- 
spection of the join-the-dots diagram produced by most 
direct-methods programs. One reason for these self- 
evident solutions may be the thousands of hours of effort 
put into discovering, rationalizing and programming 
direct-methods techniques, which have led to programs 
with remarkable success rates, often with little user 
intervention. Though rarely discussed in such terms, 
these programs are expert systems, combining the math- 
ematics and physics specific to the problems with careful 
use of discriminators and figures of merit to permit 
the user (or the program itself) to resolve otherwise 
degenerate or conflicting results. In addition, structure 
solution provides an oppommity for the chemist to use 
his experience with little recourse to crystallography. 
The outcome of a phasing calculation that is substantially 
correct is an image of the structure that the chemist 
may recognise, even if it is not what he expected. 
ff he fails to recognise a correct solution, the worst 
that can happen is that the structure appears to remain 
unsolved. If he accepts as correct a false solution, this 

will generally show up as an unacceptably large R factor, 
a discriminator that enjoys a wide intuitive appeal. 

It is in phase four that the analyst is likely to make 
the least of the available data. To the modem young 
crystal-structure analyst, refinement has become synony- 
mous with least-squares refinement, in contrast with the 
older and often more informative Fourier techniques. 
Unlike Fourier refinement, least-squares methods are 
very amenable to being incorporated into semi-automatic 
procedures. Unfortunately, simple least squares distances 
the analyst from the refinement and gives rather poor 
diagnostics of incipient problems. However, the most 
dangerous feature of least-squares refinement is that it 
is concerned with the optimization of numerical values 
of the parameters in a mathematical expression that is 
supposed to represent the transformation of the structure 
amplitudes. The real transformation of these amplitudes 
is the continuous electron distribution in the crystal. The 
analyst must remember that replacement of the con- 
tinuous distribution by atoms with simple form factors 
is only a mathematical convenience and he should not 
be unduly surprised if occasionally such a substitution 
fails to enable him to compute structure amplitudes that 
accurately mirror the observations. In structures with 
large thermal motion or serious disorder, the only real 

numerical description of the electron density may be 
Fourier-summation figure fields. The problem, of course, 
is that these fields can only be computed once the 
analyst has estimates of the phase angles, which usually 
requires the use of a parameterized model. Because 
of the cyclical nature of this argument, the analyst is 
forced back to developing an atomic model that best 
represents the continuous electron density, if only in 
order to generate valid phases for a Fourier synthesis, 
and perhaps in the end does not pay too much attention 
to the values of coordinates obtained for some atomic 
sites. 

In addition, the analyst must always remember that 
there is the possibility that the observed data do not 
contain enough information to permit reliable estimates 
for the parameters in the postulated model. The estimated 
standard deviations of atomic and molecular parameters 
may be seriously underestimated in an absolute sense 
but, if correctly computed with proper attention to the 
effect of covariance between highly correlated least- 
squares variables, they do give a vital measure of the 
internal consistency of the model. 

Until recently, programmers concerned with develop- 
ing the refinement sections of structure-analysis pack- 
ages have been concerned largely with the problems 
of performing least-squares refinements on small and/or 
slow computing equipment. A wide range of com- 
putational tools have been devised for dealing with 
particular problems but little attention has been paid 
to automatic selection of the best procedures to be 
used in individual cases or for producing integral tests 
for the validity of refinements. The result is that the 
analyst, having been given good instruments and quasi- 
automatic procedures for data collection, data reduction 
and structure solution, is suddenly left to choose his 
own refinement strategy. Even quite modest packages 
usually have a selection of refinement tools and utilities 
for assessing the quality of a refinement. However, 
refinement programs are designed by experts for use by 
the initiated. Manuals rarely have the space to explain 
what the utilities do, how their output is to be interpreted 
and what tools might solve what problems. 

In single-crystal X-ray structure determination, we 
have available a technique of staggering power. A prob- 
lem not yet resolved is how much of that power should 
be turned onto any particular problem. The conflicting 
temptations are to try to do the very best for every 
analysis or to be content with the first E map. No 
doubt the optimal solution is somewhere between these 
extremes, so there are two pressing needs at the present 
time. One is to show that a 'good' analysis can be 
obtained with only a little more thought than is required 
for a 'fair' analysis, so that all results that are deposited 
in the databases can be relied upon. The second is 
to try to encourage those few crystallographers still 
engaged in developing refinement programs to provide 
powerful numerical tools in packages that can be used 
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by scientists essentially ignorant of the principles behind 
the techniques they are trying to use. 

This short article is not intended as a historical review 
of the many refinement tools found scattered through the 
literature but rather as a summary with brief explanations 
and examples. My concern is to bring together some of 
the advice and warnings already to be found elsewhere. 
Much of it is in texts concerned with crystallographic 
computing and so is likely to be missed by the hard- 
pressed synthetic chemist. The aim is to persuade the 
analyst that full-matrix refinement of 'anything that 
moves' is not the only permitted refinement strategy 
and, until programs are developed to do it for him, to 
encourage him to think critically about what has been 
or could be achieved. 

It is perhaps useful to end this introduction with 
a general warning. Modem computer programs, the 
medium through which the crystallographer has access 
to refinement techniques, are very robust. That is to say, 
they rarely actually fail to execute to completion. This 
success by the program must not be confused with the 
idea of a successful refinement step. The fact that so 
many different refinement strategies 'work', yet lead 
to slightly different 'answers', distresses the beginner. 
Sadly, crystallographic mathematics is no different from 
any other, and the answer you get always depends upon 
the question you ask. The art, then, is to ask the fight 
questions. 

Background 
The definition of a difficult or incomplete refinement is 
likely to vary from crystallographer to crystallographer 
and from structure to structure. The concept of a 'correct' 
structure is meaningless and must be replaced with 
something like 'fit for its uses'. The problem facing the 
practical analyst is that the final purposes may not be 
evident at the start of the analysis and that new purposes 
may emerge after a considerable lapse of time. This 
latter problem is becoming more acute as chemists make 
increasing use of computer-aided searches of structural 
databases. The high probability that the analyses are 
going to be processed mechanically with few checks 
being made on their validity imposes a duty on analysts 
to do the work as well as is economically possible. The 
real cost of performing an analysis properly is relatively 
small compared with the potential cost of having to 
resynthesize a product because the original analysis was 
incomplete or inadequate. 

For this paper, a difficult or incomplete refinement 
could be seen as one in which the model is chem- 
ically or physically anomalous, or one in which the 
R factor [or weighted R factor, minimization function 
M - )--~(wAg), goodness of fit etc.] has not reached 
as low a value as might be expected. Note that the 
minimization function can only approach its prescribed 
value, something close to the number of degrees of 

freedom, if valid weights are assigned. The debate about 
weights is continuing (Schwarzenbach et al., 1989). 

Principles 

It is not appropriate to repeat here the mathematics of 
least-squares refinement but it is necessary to describe 
some qualitative aspects of the method. The aim of the 
process is to obtain agreement between some function of 
the observed X-ray intensities and equivalent quantities 
calculated from a model. There are several definitions 
of an acceptable agreement, but that widely used in 
crystallography is that the weighted sum of the squares 
of the difference between the observed and calculated 
quantities is minimized - hence least squares (Rollett, 
1984). Other functions are minimized in robust-resistant 
refinements (Nicholson, Prince, Buchanan & Tucker, 
1982) and least absolute deviations (Press, Flarmery, 
Teukolsky & Vetterling, 1986). These latter methods 
seem to be less sensitive to rogue observations. The 
reader seriously interested in these topics can find a good 
overview in Diamond (1984), Prince & Boggs (1992) 
and Press et al. (1986). 

Unlike Fourier methods, which require the summation 
to be over the whole of reciprocal space, least-squares 
refinement does not require a 'full' data set. However, if 
only a subset of the full theoretical data set is used, 
it must be chosen so that it adequately defines the 
parameters whose refinements are being attempted. This 
idea is well expressed by the statistical term leverage 
(Atkinson, 1985). In outline, its implication is that the 
observations are not all bunched together in some way 
in one part of the observational space but rather are 
well separated and give good coverage of the space 
(imagine, for example, trying to refine cell parameters 
for a 20 x 20 x 20 A cell from setting reflections with 
hmax and kmax around 10 but/max only 1). In addition, if 
a subset of the data is used, it is important that the error 
distribution of the subset reflects the error distribution of 
the whole data set. If the error distribution of the subset 
is biased in a different way to that of the full set, not only 
will the estimates of the errors in the refined parameters 
differ from those that would have been obtained from 
the full set but so also will the actual parameter values. 

The distribution of errors in X-ray diffraction data 
and their influence on the final results is not well 
understood (Schwarzenbach et al., 1989), but it appears 
to be more complex than a Poisson distribution (Hong 
& Robertson, 1985). Working with a subset of the 
data that is selected by some simple function of the 
data itself is likely to be hazardous. Thus, while it 
may be acceptable to work with only the strongest 
reflections during the initial stages of refinement [see, 
for example, the initial refinement strategy adopted in 
S1R92 (Altomare, Cascarano, Giacovazzo & Guagliardi, 
1993)], it is important to use much more of the weak 
data in the final stages. For the highest-quality work, 
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there is evidence to support working with all ('observed' 
and 'unobserved') reflections (Hirshfeld & Rabinovich, 
1973). For a strongly diffracting crystal measured with 
Cu Ka radiation, 'all' will probably mean all reflections 
up to the maximum Bragg angle of the diffractometer. 
With harder radiation, e.g. Ag Ka, all the very high 
angle data will be insignificantly above background 
levels for organic materials and so will contain no useful 
information. The criterion for rejection of reflections in 
the final stages of refinement should not be the individual 
I / a ( I )  values, but the 0 value at which the majority of 
reflections become indistinguishable from noise. Below 
this 0 value, all reflections should be used, since a very 
weak low-angle reflection has a high information content 
and so must be included in the refinement. 

The analyst needs to hold clearly in the back of his 
mind that most discussions about the use of very weak 
reflections or of weighting schemes based largely on 
a(I) values are made subject to the conditions that the 
e.s.d.'s of the data really do reflect the dependability 
of the observations. In fact, e.s.d.'s computed from 
counting statistics alone are only a measure of the 
reproducibility of the measurement if all factors except 
the time at which the observation is made are held 
constant. They are only very loosely measures of the 
absolute dependability of the data. Thus, while there is 
a lobby for including all reflections, the literature con- 
tains occasional instances that justify a less mechanistic 
attitude. For example, a recent analysis was published 
for a structure in space group Pnn2, the space group 
being chosen on the basis of the systematic absences 
(Cousson, Nectoux & Rizkalla, 1992). Marsh (1993) 
noticed (he does not reveal why) that the structure 
had pseudosymmetry higher than that required by the 
space group and that, if the 'systematic absences' were 
ignored, the structure could be very satisfactorily refined 
in space group Pnna. The systematic absences were 
"obviously close to the 'unobserved' cutoff . . . .  Their 
presence, if real, can surely be blamed on the Renninger 
effect". Experiences such as this serve to remind us 
that reliable estimates of or(I) cannot be made from 
the routine practice of making only a single observation 
of each reflection but require multiple observations of 
the reflection and its equivalents under different but in 
principle equivalent regimes. 

For routine work, a minimum 1/a(I )  value of 3.0 
seems to work well, with little to be gained, other 
than appearances, by setting the limit to, for example, 
Fo > 2.0a(Fo) [equivalent to 1 > a( I ) ]  for a weakly 
diffracting crystal. A better solution may be to reduce 
the number of variables in the model or add supple- 
mentary observations (restraints). The norm of six to 
ten observations per variable only really applies if the 
observations are of fair quality and the parameters are 
properly spanned by the data. If data at very low I / a ( I )  
are to be included in the refinement, then the refinement 
should be against Fo z, permitting the use of negative 

observations and removing any bias. The weights will 
need to be different from a conventional refinement 
[(w') 1/z - (w)l/z/21Fol, where w is a weight computed 
according to the analyst's favourite scheme] if the same 
minimum is sought (note, however, the problem that 
emerges as Fo tends towards zero). 

Crystallographic refinement is carded out by the 
method of nonlinear least squares. There are a number 
of complications that arise from this nonlinearity. The 
method proceeds from an initial model to a refined 
model by successive adjustments. There is no way of 
guaranteeing that the model will improve or even that the 
process is convergent, nor of knowing that, having found 
a good model, there does not exist an even better one 
(Gopinathan, Whitehead, Coulson, Carruthers & Rollett, 
1974). Equations (1) and (2) (observational equations, 
see later) show one of the sources of the difficulty: 

alXl  -1- a2x2 -{- . . . .  Yl,  (1) 

Oyc 6xi + Oyc 
OXl ~X20x2  + . . . .  Yl -- Yc. (2) 

In linear least-squares refinement [(1)], the terms on 
the left-hand side are functions of the coordinates in 
the space at which the observations were made. The 
choosing of the observations to be made is an important 
stage in the design of an experiment, which is why the 
matrix of observations on the left of (3) is called the 
design matrix; 

Ax  = y. (3) 

In nonlinear least-squares refinement [(2)], these terms 
are replaced by estimated derivatives of the value of 
the observation with respect to the model parameters. 
Since we cannot observe these derivatives, they must 
be calculated from the current model. This has two 
unfortunate implications. The first is that we cannot 
easily choose the terms in the design matrix [see, how- 
ever, Rollett, McKinlay & Haigh (1976) for a dis- 
cussion on how to choose the most useful terms and 
Milledge, Mendelssohn, O'Brien & Webb (1985) for 
how to choose the most useful observations]. The second 
is that the actual values in the design matrix, and hence 
the normal matrix, are calculated from the model itself 
and have nothing first hand to do with the observations 
we have made (except that we have somehow - by direct 
or Patterson methods - obtained the model from them). 
One evident outcome is that an essentially incorrect 
model is unlikely to yield derivatives that will lead 
to improvement of the model. A second is that it is 
possible to construct models that lead to a matrix that 
is numerically unstable or singular. Working with such 
matrices usually leads to meaningless parameter shifts 
unless special care is taken (Forsythe, Malcolm & Moler, 
1977). 
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It is perhaps worth digressing for a moment to re- 
state that in crystallographic least-squares refinement we 
attempt to minimize ~-~(wA2), where ,4 is normally 
Fo - Fc, though there is currently a strong lobby for the 
use of Fo 2 - F~. The structure we obtain at a minimum 
depends only on the values of w and ,4 and not in any 
way on the terms in the normal matrix, the left-hand 
side of the normal equations 

A ' W A x  = A ' W y .  (4) 

However, the terms in the normal matrix determine how, 
if at all, we arrive at the minima and the use of bad 
weighting, a bad starting model or an ill-conditioned 
matrix may slow down or prevent the refinement con- 
verging. The corollary is that we can apply any modifica- 
tions we like to the left-hand side as aids to convergence 
without fear of prejudicing the outcome. A minimum 
is a minimum, however achieved. Note, however, that, 
since the weights also appear in ~--~(wA2), the values 
of parameters at the minimum may depend critically 
on the choice of weights. Finally, it must always be 
remembered that least squares is a method for refining 
an already fully parameterized model. The technique 
has no mechanism for warning the user that there are 
still significant trends in the residuals that could be 
removed by the introduction of a particular parameter. 
The analyst must use some other technique to discover 
which parameters are missing. However, there are cases 
where the method can inform the analyst that he has 
introduced too many or redundant parameters (Lawson 
& Hanson, 1974) 

Table 1 lists some potential sources of difficulties 
during refinements and Tables 2 and 3 give some math- 
ematical and crystallographic tools that may be suitable 
for various situations. The items in Table 1 are covered 
by examples throughout this article since several of the 
crystallographic and mathematical tools may be useful 
for their diagnosis and, perhaps, their cure. 

Mathematical tools 

(i) Double-precision mathematics 

In crystallography, there are usually very many more 
observations (one for each reflection) than there are 
unknown variables (one for each model parameter) so the 
problem of solving the set of simultaneous equations that 
define the parameters as a function of the observations 
should be well overdetermined. Standard texts usually 
remark that solution of these equations via the normal 
equations is the least-satisfactory procedure, especially 
by methods that involve inversion of the normal matrix. 
The preferred method (see, for example, Press, Flan- 
nery, Teukolsky & Vetterling, 1986) is singular-value 
decomposition of the observational equations, which can 
give useful diagnostics if there is something wrong 

Table 1. Potential sources of  difficult refinements 

Bad or insufficient data 
Wrong space group 
Missing atoms 
Pseudosymmetry 
Disorder 
Twinning 

Table 2. Mathematical tools useful in the resolution of  
difficult refinements 

(i) Double-precision matrix work 
(ii) Model building 
(iii) Matrix of constraint 
(iv) Reparameterization to orthogonal parameters 
(v) Rigid groups 
(vi) Observations of restraint 
(vii) Shift limiting restraints 
(viii) Refinement without X-ray data 
(ix) Characteristic-value filtering 

Table 3. Crystallographic tools useful for trying to un- 
derstand the reasons for a difficult refinement 

(i) Fourier synthesis 
(ii) Slant (or generalized) Fouriers 
(iii) Thermal parameters, ORTEP, principal axes, TLS 
(iv) Analysis of residuals 
(v) Detection of outliers 
(vi) Refinement against F 2 

with the model or data. In spite of this, most small- 
molecule crystallographic programs do use the normal 
matrix and its inverse and are often perfectly satisfactory. 
The reason for this is that the structure-factor equation 
generally involves parameters that are well resolved, so 
the normal matrix is well conditioned, which implies that 
its inverse is well defined. In fact, crystallographic re- 
finement can be expected to be so numerically stable that 
most programs do the matrix work in single precision. 
This benign nature of the bulk of problems is fortunate, 
since the size of crystallographic problems would make 
sophisticated numerical techniques or double-precision 
representations almost impossible. However, designing 
refinement programs to a minimal level of numerical 
sophistication does mean that problems of numerical 
instability are more likely to occur. The altematives - 
rugged and reliable numerical methods - inevitably lead 
to larger and slower programs (though not necessarily 
ones requiring any additional interaction with users) that 
will perform tmcompetitively on routine tasks. As the 
cost of computer memory continues to decrease and 
processors become faster, we can hope to see more 
programs perform matrix work in 64-bit precision and 
the use of more robust numerical methods. For the 
moment, we should expect mixed-precision programs, 
using double-length accumulators in vital inner loops. 
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(ii) Model building 

Refinement consists of two processes that are usually 
alternated and iterated: model building and parameter 
optimization. The initial stage, structure solution, con- 
sists of finding a model that makes physical sense and 
yields structure factors in substantial agreement with 
the observed values. This model is then refined by 
optimizing the parameter values and perhaps increas- 
ing the complexity of the model. Fourier techniques 
are described below as a method for improving initial 
parameter values, particularly positional ones. However, 
geometric methods are also very valuable for improving 
a model that is recognizable but either highly distorted or 
incomplete. Geometric placing of H atoms is one much- 
used form of modelling. Two others are regularization 
and refinement against restraints without use of the X-ray 
data. In regularization, a desired configuration of the 
atoms is mapped onto and replaces or augments the 
current distorted model. Thus, if three atoms can be 
located for a phenyl group, the remaining three can be 
predicted with a fair degree of confidence. The principle 
can be extended to larger groups or whole molecules. 
An example is given later. 

The mapping of the ideal group onto the proto- 
model can be done in several ways (Watkin, 1980) 
and the user should take care to choose that which is 
most appropriate. The method involving a curvilinear 
transformation (Diamond, 1976) does not appear to have 
had much use, but the general linear transformation 
is useful if it is suspected that the structure may be 
a dilated or contracted image of the idealized model, 
e.g. a compressed octahedron. Care must be taken with 
this method if the proto-model is essentially planar but 
the template is not, since the general transformation 
may result in a change of hand and/or substantial di- 
lations. More commonly, the user will really want an 
orthogonal transformation - one that preserves the bond 
lengths. Several algorithms exist for this (Kabsch, 1978; 
Mackay, 1984; Diamond, 1988, 1990), including ones 
that preserve chirality. It is usually a wise precaution to 
look at graphical representations of structures that have 
been extensively geometrically modelled and to check 
that there are no impossibly short nonbonded distances. 
Regularization is, of course, an essential prerequisite for 
rigid-body refinement. 

(iJi) Matrix of  constraint 

Conditions may arise where the design matrix can 
hardly distinguish between a number of numerically 
equivalent but perhaps physically different solutions. 
Improved mathematical techniques (e.g. principal- 
component analysis) might resolve this ambiguity but 
such approaches may be rather blunt tools if the physical 
solution can be estimated by reference to some well 
established law or by comparison with accumulated 
scientific experience. In this situation, we may say that 

the solution, out of all numerically equivalent solutions, 
must satisfy certain conditions and, having in effect 
removed some degrees of freedom from the problem (by 
defining a partial outcome), let the mathematics resolve 
the remaining parameters. This imposition of a desired 
outcome on the solution of simultaneous equations 
may be accomplished by the method of Legrange 
multipliers (Hamilton, 1964) (an approach rarely used 
in crystallographic practice) or via a matrix of  constraint 
(Larson, 1980). The effect of this procedure is that the 
solution is constrained to conform to certain l~redefined 
conditions that define either absolute parameter values 
or strict relationships between them. This procedure 
reduces the number of independent parameters in the 
problem so that those remaining may be defined by 
the data to a greater precision than in a totally free 
refinement and, as such, is a powerful tool for ensuring 
that the solutions are physically reasonable. 

The catch, of course, is that the analyst must be careful 
to impose valid constraints. Even if he were to impose 
nonsensical requirements on the solution, the calculation 
must inescapably apply them. Now nonsensical con- 
straints, such as might be the result of typing errors in 
the data for the program, would probably be evident. A 
much more serious situation exists when the constraints 
are marginally inappropriate. It may then not be clear 
that they are not optimal and it will be difficult to analyse 
the effect they will have had on the determination of the 
remaining parameters. Nonetheless, constraints provide 
a convenient way of imposing physically reasonable so- 
lutions to the observational equations, with the particular 
advantage that they reduce the size of the normal matrix. 

A common use of the matrix of constraint is in the 
relating of atomic parameters so that they conform to the 
space-group symmetry. However, it could be invoked in 
order to impose symmetry on the shifts of parameters 
not formally related by the space group. Examples are 
the imposition of pseudosymmetry operators and the 
generation of 'riding' models for parameters. 

Care should be taken to distinguish between rid- 
ing models in least-squares refinement, when parameter 
shifts are related, and riding models for vibration, in 
which it is postulated that some part, or all, .of the 
molecular framework is inflexible, so that the thermal 
motions of the component atoms are related (Jbhnson, 
1980, pp. 14.01-14.20). A simple riding model in least- 
squares refinement might link the shifts in the site 
occupancies of a number of atoms, say a molecule 
of solvation (remember that in nonlinear least-squares 
refinement we are concerned with shifts in parameters 
rather than the parameters themselves). If the molecule 
is given full site occupancy, when in fact some solvent 
has been lost, and this parameter is not refined but 
the temperature factors are, these may take on large 
values in an effort to accommodate the reduced electron 
density (note the implicit constraint that the occupancies 
are unity). Normally, if the solvent is of no great 
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interest, the analyst might be happy with unreasonable 
temperature factors, but a careful examination of a 
difference electron-density map might show residual 
density around the solvent sites because changes in 
temperature factors do not have quite the same effect on 
the structure factor as changes in site occupancies. If the 
analyst now tries to refine both individual temperature 
factors and individual site occupancies, the computation 
will almost certainly fall into ruin unless the data are 
of excellent quality and extend to high 0 values. One 
solution to this problem is to use the matrix of constraint 
to ensure that, even though the individual atoms may 
have different temperature factors, they all have the 
same site occupancy. The atoms are all given the same 
occupation number and this parameter is adjusted syn- 
chronously. In the matrix of constraint, this is achieved 
by defining a least-squares parameter that has no simple 
physical representation but is a weighted sum of the 
derivatives of the structure factor with respect to all 
of the occupancies involved. Thus, all of the atoms 
contribute to the definition of the shift to be applied 
to their now common occupancy. A similar strategy 
can be used to help control temperature factors in an 
unruly side chain. Remembering that in nonlinear least- 
squares refifnement we are computing parameter shifts, 
we can in this case arrange for successive atoms to have 
progressively larger starting values for the temperature 
factors. For complete numerical accuracy, the shifts 
should be scaled as a function of the distance of the 
atoms from the root of the vibrational disorder, but 
merely making them ride will normally be adequate. 

The most common use for riding refinement is to 
preserve the local geometry of H atoms bonded to 
heavier atoms. For a CH2 group, the three x coordinates 
are added in to one least-squares variable, as are the 
y and z coordinates. Thus, the contribution of the H- 
atom derivatives does have an effect on their joint 
shifts but the computation is dominated by the carbon 
contribution. This constraint ensures that the two C-H 
vectors remain of constant length but also fixes their 
orientation in the cell, which might not be desirable. It 
should, of course, be possible to make any groups of 
parameters ride. In programs that purport to do this, it 
is worthwhile checking that derivatives are jointly added 
into the matrix, rather than a simple shift being computed 
for one parameter and then that shift being applied af- 
terwards to other parameters without their contributions 
having been added into the normal equations. Apart from 
slowing down the refinement, this naive strategy leads to 
incorrect parameter standard deviations. Note also that 
a riding H atom will have the same positional e.s.d.'s 
as the parent C atom, though the bond-length e.s.d, will 
be zero. 

It could be suggested that riding hydrogen constraints 
might represent computational overkill and that a much 
more cost-effective process would be to compute the 
H-atom positions geometrically, refine the C or other 

skeleton atoms and then delete the H atoms and recom- 
pute their coordinates. In any case, because a positional 
riding model preserves bond vectors, it can lead to 
distortion of bond and torsion angles. H atoms must be 
included in medium- or high-quality refinements because 
of their contribution to A, but their contribution to 
derivatives is probably small and unreliable. 

It must always be remembered that, when a parameter 
is omitted from the refinement, it is made the subject of 
an implicit constraint and is given some intrinsic value 
whose interaction with other parameters cannot be as- 
sessed unless it is introduced as a variable. For example, 
refinement of an isotropic temperature factor implies the 
constraint that U[11] = U[22] = U[aa] and appropriate 
relationships for the cross terms. Other parameters are 
often constrained by default (occupancies to unity, and 
unapplied extinction and absorption corrections). There 
is no such thing as an unconstrained refinement. 

(iv) Reparameterization to orthogonal coordinates 

In some cases, the analyst can foresee that parameters 
may be highly correlated and that a simple transforma- 
tion of the coordinate system will reduce the problem. 
For example, most crystallographers know that the high 
correlations between x and z in P21/c with a very large 
unique angle can often be reduced by a transformation 
to P21/n, when they can expect the tmique angle to be 
closer to 90 °, so that x and z are now almost orthogonal. 
In another example, where there is a pseudomirror, 
the shifts in some parameters on refinement should be 
approximately equal in magnitude but opposite in sign 
to the shifts in corresponding parameters. A standard 
refinement will almost certainly not produce symmetrical 
shifts. If the original physical parameters are replaced 
by carefully chosen new least-squares parameters, a 
symmetric solution will be obtained not far from the trial 
model (Rae, 1973). This technique is in fact related to 
characteristic-value filtering, except that we can estimate 
beforehand the rotation needed to resolve the otherwise 
degenerate parameters. 

The appropriate transformation involves a rotation 
of the normalized coordinate system by 45 ° . This is 
achieved by defining two new parameters: 

X t ~ X l  "~- X 2  

(5) 
X It ~ X 1 - -  X 2 

where x: and x2 are the pseudorelated parameters 
(Prince, 1982). The least-squares procedure is then 
performed on x' and x ~', and xl and x2 are extracted 
after the matrix inversion. The correct computation of 
the e.s.d.'s of molecular parameters involving x: and xz 
becomes more complicated, but not more so than in the 
case where the atoms are parts of rigid groups. Even 
after this coordinate transformation, the matrix work is 
still liable to be sensitive, but very mild shift-limiting 
restraints (see later), e.g. 1.0/~, will control things 
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without slowing down the refinement unnecessarily. The 
technique has proved to be very versatile in dealing with 
problems of pseudosymmetry caused by pseudocentres 
and superlattices. It can conveniently be implemented 
via the matrix of constraint. 

(v) Rigid groups 

The matrix of constraint has so far only been de- 
scribed with respect to its influence on small numbers 
of parameters. However, it is not difficult to extend the 
implementation so that complex shapes can be mani- 
pulated as coherent and inflexible units. The inflexibility 
can be restricted to apply only to the relative atomic 
positions (molecular shape) or can represent relation- 
ships between the atomic temperature factors. For n 
atoms, the 3n atomic positional shifts are replaced by 
six composite least-squares parameters, three defining 
rotational shifts and three translational shifts. The 6n 
anisotropic temperature-factor shifts are replaced by 20 
shifts to a TLS thermal model, in which the whole group 
is treated as having translational and librational harmonic 
motion (T and L) and these motions are coupled through 
the screw tensor, S. Rigid-body refinement is often 
advised as a technique for reducing computational time 
(since the normal matrix is often much reduced), but its 
more important role is in improving the observation- 
to-parameter ratio in cases where there is a shortage 
of data (perhaps through difficulties in getting good 
crystals) and the subunits of the structure are reasonably 
well characterized. This is often the case with large 
organometaUic compounds and with polypeptides and 
polysaccharides. A further case relevant to this paper is 
that in which the refinement becomes unstable owing to 
an inability to resolve atomic parameters, for example 
when there are interpenetrating disordered molecular 
fragments. If the geometry of these fragments is well 
characterized from other experiments and there is no 
reason to expect that they are distorted in the material 
under investigation, then a very productive strategy is 
to regularize the geometry of the fragments to their 
accepted values and then refine them as rigid groups. 
A rather useful rule of thumb for refinement is that, if 
the atoms are not reasonably well resolved in an Fo 
map or, better, in a 2Fo-F~ map, then there will almost 
certainly be problems with the refinement and constraints 
or restraints will be needed. In the event of constrained 
refinement leading to the phasing of electron-density 
maps that clearly reveal atoms, it will generally be 
possible to remove the constraints. 

The analyst should note that, broadly, there are two 
approaches to programming rigid-group refinements. In 
one scheme, the rigid model is presented in a standard 
orientation and location and the angles and translations 
needed to bring it to its best position in the cell are 
computed and updated at each cycle of refinement. The 
rotation matrix is linearized for the computation of the 

angular corrections but the nonlinear matrix is used to 
compute the updated coordinates. In the other scheme, 
the model group is placed at approximately its correct 
position and orientation in the cell and then the linear 
rotation matrix is used to compute angular shifts that 
are applied, through the linear approximation, directly 
to the model. This second approach, which has the 
computational advantage that no matrices other than the 
matrix of constraint need be computed (and thus leads 
directly to the correct computation of the e.s.d.'s of 
the molecular parameters), has the disadvantage that for 
large rotational shifts of large groups there may be some 
slight distortion of the group, ff the program description 
does not say which method is being used, the user should 
check that atoms near the periphery of a large group have 
large positional e.s.d.'s but zero e.s.d.'s on bond lengths. 

(vi) Observations of restraint 

The matrix (6) and the block diagram in Fig. 1 
show how all the observations are filtered through the 
matrix of constraint, so that its effect cannot be escaped, 
whether the imposed constraint is reasonable or not. A 
more sensitive approach to influencing the outcome of 
a refinement is to suggest to the mathematics a solution 
that you would like to see, providing it does not come 
into too great a conflict with the X-ray observations. A 
mechanism for this gentle approach to fixing the result 
is to use observations of restraint. 

5Xapplie d --- P(M'A'WAM)-IM'A'WAY,  

OFo/Ox" 
A =  ORt/Ox , 

1 
Fo--Fc] 

A Y =  Rt~..oRcJ , 

~Xapplie d : P~Xleastsquares  ~ 

Xphysical "~ MXleastsquares  "~ ¢~ 

(6) 

where A is the matrix of derivatives, Rt is a restraint 
target value, AY is the vector of residuals, P is the 
matrix of partial shifts, M is the matrix of constraint 
and c is a vector of constants. 

If some aspect of the hoped-for refinement can be 
expressed as equations relating the crystallographic pa- 
rameters to some known and desirable quantity, then the 
equations can be differentiated and treated in exactly 
the same way as the structure-factor equations. The 
differentials of the variables go into the design matrix as 
usual and the differences between the desired values of 
the function and those computed from the current model 
are added to the difference vector in the normal way. 
The sceptical reader will wonder, very reasonably in 
view of the controversy about the weighting of ordinary 
structure-factor observations, how these supplemental 
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equations should be weighted. As always with least- 
squares weighting, the numerical values of the weights 
depend upon what the analyst is trying to achieve. An 
initial proposal might be that, during the model-building 
stage, especially if the data are poor and scarce and 
the known functions of the parameters are indeed very 
well known, their equations can be given a relatively 
large weight. As the refinement proceeds, it becomes 
necessary to discover if the experimental observations 
are sufficient by themselves so that the restraint weights 
can be reduced to zero. A practical compromise is for 
the analyst to weight the X-ray data in his favourite 
manner, assign relative weights between the equations of 
restraint reflecting his confidence in these equations, and 
then scale X-ray and supplemental equations together 
(Rollett, 1970). This is a form of hypothesis testing, in 
which the analyst is posing the question: 'Given my es- 
timates of the accuracy of my experimental observations 
and my confidence in the supplemental functions of the 
parameters, does my model satisfy all these requirements 
and, if not, can it be made to?'. A great virtue of such a 
technique is that, if the experimental data do not really 
define some composite function of the parameters, the 
equations of restraint will try to modify the parameters 
to satisfy the restraint and at the same time not infringe 
the experimental observations. We remarked above that 
the matrix of constraint must be obeyed even if the 
requested constraint is nonsensical. With equations of 

restraint, a nonsensical restraint (that is, one in conflict 
with the experiment) can be outvoted by the experiment, 
leading to a large (relative to the assigned weight) 
difference between the requested and computed values 
of the restraint. The equation of restraint is added into 
the normal equations just like any other equation and, if 
its weight is reasonably assigned, its effect will be no 
more than advisory. 

The essence, therefore, is that restraints can be more 
gentle than constraints and can be applied when the 
analyst has little more than a hunch about the best 
solution. They might also appeal to the programmer 
through their ease of implementation and their delicacy 
of application. For example, the matrix of constraint, 
which is commonly used to fix a C-H bond length, 
will also fix its direction. This is usually undesirable. 
Suggesting a desirable bond length v ia  a n  observation 
of restraint makes no demands on the orientation of the 
bond. Molecular-symmetry considerations might encour- 
age the application of other restraints, such as common 
H-C-H,  X-C-H or other repeated-fragment angles. The 
further condition of fixing the orientation of a bond with 
restraints is not difficult but does not seem to be much 
in demand. 

Equations of restraint are easily incorporated into 
programs and a package might reasonably be expected to 
include functions to control distances, angles, planarity, 
thermal parameters, chirality, sums (and differences) of 
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6x '  6x  
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8R 
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Fig. 1. Tableau for damped weighted constrained restrained least-squares refinement, showing that restraints (R) are only added into the matrix with 
the observations (F) but that both observations and restraints are inescapably passed through the matrix of constraint (M). m = X-ray observations, 
n = restraints, p = shift-limiting restraints, t = m + n + p, r -- crystallographic parameters and s = least-squares variables. 
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parameters, floating origins, absolute parameter values 
and parameter shifts. 

(vii) Shift-limiting restraints 

Shift-limiting restraints are a common feature of pro- 
tein and some small-molecule refinement programs and 
are available in a slightly disguised form in SHELX76 
(Sheldrick, 1976) as a 'damping factor' [which in this 
case must not be confused with partial shifts, which 
are also often called damping factors - as in ORFLS 
(Busing, Martin & Levy, 1962) or XTAL (Stewart & 
Hall, 1986)]. Shift-limiting restraints tend to be rather 
crude implementations of the Levenberg-Marquardt al- 
gorithm, which is designed to improve the convergence 
properties of least-squares processes when only a very 
rough approximation to the normal matrix is available. 
(In proteins, this arises because only a band matrix - 
sometimes only diagonal - is accumulated for the X-ray 
data, together with a sparse scattering of off-diagonal 
terms coming from restraints.) The technique consists 
of augmenting the diagonal terms of the matrix with 
a constant that is a fraction of the trace of the matrix 
(Gill, Murray & Wright, 1981). 

Choosing the optimal fraction is an iterative pro- 
cedure that crystallographic programs rarely bother to 
follow. SHELX76 adds the same constant to all the 
diagonal elements. In CRYSTALS (Watkin, Carruthers 
& Beteridge, 1985), the emphasis is shifted slightly 
and, instead of augmenting every diagonal element, 
contributions are only applied to parameters or groups 
of parameters that the analyst suspects will be correlated 
or :Jl-defined (Watkin, 1988). Whatever the details of the 
implementation, the general effect is that of suppressing 
singularities in the matrix and limiting the solution to 
one that is not too far from the starting point. If the 
matrix is well conditioned (that is, contains enough 
information to define all the parameters that the analyst 
is hoping to refine) and the augmentation of the diagonal 
elements is sufficiently delicate, the refinement proceeds 
more or less normally. However, if the matrix would 
otherwise be singular (a condition that eventually leads 
to incipient division by zero through the appearance of 
a zero on the diagonal of the partially processed normal 
matrix), the augmentation leads to the computation of 
a very small shift for the relevant parameter. In other 
words, if the matrix 'does not know what to do' for a 
particular parameter, more or less nothing is done and 
the parameter is only slightly modified. Shift-limiting 
restraints may well act as origin-fixing conditions for 
polar space groups, though the parameters involved will 
usually have large estimated standard deviations unless 
the restraints are very severe. They will also prevent the 
refinement of all coordinates of an atom on (x, - x ,  z) 
from going singular but will not give a solution with 
the correct symmetry. That should be achieved either 
with the matrix of constraint or with characteristic-value 
filtering (see below). 

(viii) Refinement without X-ray data 

An obvious extension of the schemes described above 
is to keep the weights of the restraining equations at full 
value but reduce those of the X-ray data to zero, that is, 
refine against the restraints only. This technique is often 
called distance least-squares (DLS) refinement, after the 
well known program DLS used for the modelling of 
inorganic structures (Baerlocher, Hepp & Meier, 1977). 
However, it is not necessary to restrict the restraints 
to distances only. Any valid restraints may be used 
- geometric, shift-limiting, energetic. If the geometric 
restraints only refer to an isolated molecule and there 
are no atoms on special positions, then the normal matrix 
will be singular since it contains no information to locate 
the molecule in the cell, nor to define its orientation. 
For an extended (lattice) structure, there are usually 
known geometric features that span symmetry operators, 
e.g. an O-Si-O'  angle (with O' related to O) may be 
defined as 109 ° . Sufficient geometric restraints involving 
symmetry operators will fix the origin and orientation of 
the structure. In the case of molecular crystals, normal 
bond and angle restraints only determine the molecular 
geometry and cannot fix the position in the unit cell. 
The only restraints spanning symmetry operators are 
from nonbonded contacts; for these, an asymmetric 
distance restraint (which inhibits short contacts while 
tolerating long ones) is required to fix the origin and 
orientation (Watkin, 1988). The technique of not refining 
three arbitrary atoms is not recommended for origin 
and orientation fixing and, if nothing better can be 
hypothesized, shift-limiting restraints or characteristic- 
value filtering should be used to control the incipient 
singularities. 

Refinement without X-ray data is an excellent method 
for regularizing a distorted structure or for developing a 
new model from a related structure. 

(ix) Characteristic-value filtering 

The simultaneous equations for shifts in the crystal- 
lographic parameters obtained by a Taylor expansion 
of the structure-factor expressions do, in the happi- 
est of situations, have a single unambiguous solution. 
However, when there are approximate (or unidentified 
exact) relationships between the apparently independent 
crystallographic parameters, these equations may have 
more than one solution, which will produce more or 
less numerically indistinguishable residuals. When this 
situation arises, simple numerical processing will select 
a solution largely on the basis of rounding errors in the 
arithmetic and may yield solutions that give enormous 
but complementary shifts. For example, simultaneous 
refinement of temperature factors and site occupancies 
often leads to them both taking on small but compen- 
sating values. In linear least-squares refinement, when 
the equations are solved for the unknown parameters 
themselves, this indeterminacy poses a very serious 
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problem. In nonlinear least-squares refinement, which 
is the situation in crystallographic refinement, we are 
only solving the equations for shifts in parameters. If 
we have a reasonable starting model, then a potentially 
useful solution to the degenerate equations is that which 
minimizes the changes in the parameters. This is the 
solution that emerges from singular-value decomposition 
of the observational equations. For n observations and m 
unknown parameters, this technique requires the storage 
of the nm observational coefficients and subsequently nn 
and mm orthogonal but not necessarily symmetric matri- 
ces. This ks currently impractical but an approximation 
to this solution can be obtained by characteristic-value 
filtering, also called latent root or eigenvalue filtering or 
principal-component analysis. 

To the human eye, the principal characteristic features 
of the normal matrix are its size and symmetry. However, 
with suitable numerical processing [(7)] it can be reduced 
to a diagonal form (D), that is to say, all the values not 
on the diagonal are zero. Those numbers that remain 
are the characteristic values, latent roots or eigenvalues 
of the original matrix and reveal much of the important 
information concealed in the original normal matrix. A 
rotation matrix (V), the latent or eigenvectors considered 
en masse, relates the diagonal matrix to the original 
normal matrix: 

A = V D V ' .  

The inverse of D is another diagonal matrix with 
elements l /d [(8)]. If a di is zero, then its inverse is not 
defined and the corresponding term is set to zero. This 
may occur when there are linear relationships between 
the parameter shifts or there is no information in the data 
to define them. In fact, if any di is 'small', the inverse 
can be set to zero and so filter out small eigenvalues: 

A -1 = V ' D - 1 V .  

Since the normal matrix is formed as the sums of 
squares of terms in the observational equations, some 
information may have been lost into rounding errors, so 
that eigenvalue filtering is less effective than singular- 
value decomposition; even so, this is a useful technique. 
In effect, the multidimensional space occupied by the 
model (100-dimensional for a model with 100 unknown 
parameters) is rotated until all dimensions are orthogonal 
or independent. The eigenvectors give us this rotation. 
The characteristic values or eigenvalues tell us about 
the rate of change of the structure factors with respect 
to the new independent pseudoparameters. Very small 
eigenvalues in effect tell us that the structure factors will 
be virtually unaffected by changes in the corresponding 
pseudoparameters, which are therefore almost undefined. 

If in this new space some pseudoparameters are 
undefined, then they can be eliminated from the analysis, 
shifts can be computed for the remaining parameters 

and the solution can be rotated back into the origi- 
nal crystallographic space. This yields the solution of 
minimal Euclidian length, that is to say, least perturbed 
from the initial trial solution. It requires all parameters 
to be referred to basis vectors of similar size, that is, 
similar shifts in all parameters lead to similar changes 
in the minimization function, but this is only a problem 
of scaling. In the problem with the polar direction, 
the floating origin is easily and correctly fixed by this 
procedure (Rollett, 1970), though it is computationally 
not as efficient as the method described-by Flack & 
Schwarzenbach (1988). The symmetry requirements of 
an atom on (z, - z ,  z) will also be taken care of auto- 
matically. The technique is widely used by professional 
statisticians for problems where there is little external 
evidence to help in the parameterization of the model. It 
is also used by crystallographers in most TLS analyses 
and in the program DIFABS (Walker & Stuart, 1983). 
It seems to have only rarely been used in structure 
refinement (Johnson, 1971), perhaps because of the size 
of the matrices that need to be stored but perhaps also 
because nonmathematical analysts might be shy to try 
the method. 

Crystallographic tools 

(7) If, loosely, a good refinement is one in which the R factor 
is acceptably low, then all that is necessary to achieve 
a good refinement is to ensure that the data belong 
to a single experimental procedure and then propose a 
model that yields structure factors corresponding to the 
experiment. The problem, of course, is to be sure that 
all the data do come from a valid experimental regime 
and to know what sort of model to propose. 

Patterson and direct methods now reliably give good 
trial models for the bulk of medium-sized organic and 

(8) organometallic structures so it is not unusual to see an R 
factor fall below 20% after a few cycles of refinement; 
for many analyses, it continues to fall to 3 or 4%. When 
this fails to happen, there are various tools available to 
help the analyst understand the shortcomings of the data 
or model. 

The following crystallographic tools are available for 
investigating an unsatisfactory refinement. 

(i) Fourier syntheses 

It is probably useful to spend a few moments in 
digression and consider the processes involved in crystal 
structure analysis. X-rays are diffracted by the periodic 
electron density distribution in the sample and we are 
able to observe the resultant diffracted intensity. We have 
equations that enable us to 'correct' the observations 
for various experimental conditions (e.g. Lorentz and 
polarization corrections, absorption corrections, correc- 
tions for crystal decay). Note that these corrections 
are really part of the model but that in general we 
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believe we understand them sufficiently well for the 
errors associated with the correction parameters to be 
insignificantly small, though this may well not always 
be the true situation. The intensities can be converted to 
structure amplitudes, which are related to the electron 
distribution in the sample by 

Fhkl = f Pzyz exp [27ri(hx + ky + lz)] Ox Oy Oz. (9) 

The complementary transformation to (9), 

P~z = Y -1 ~ ~ ~ [f[hkt exp [--27ri 

x (hx + ky + Iz - Othkl)  ] (10) 

permits us to compute the electron-density distribution 
in the crystal if we know the magnitude and phases of 
the structure factors. It is worth drawing attention to the 
fact that (9) and (10) are no more than mathematical 
models for a physical process and their applicability to 
each new problem should be reviewed. 

If we could observe the phases, we could compute 
electron distributions using only (10), so our electron- 
density distribution is only one equation away from 
the experiment. We cannot readily observe phases but 
approximate ones can be estimated by direct methods 
and used in Fourier syntheses. The Fourier map can be 
'interpreted' and a model proposed that may enable us to 
compute better phases than those with which we started, 
so that an improved Fourier synthesis can be computed. 
Two types of model are in common use. In one, the 
computed electron density is examined and features 
that are believed to be unreasonable are modified. For 
example, regions of negative density are eliminated and 
density is reduced in regions where it is too high. If 
structure amplitudes computed from (9) are close to the 
experimental values and the computed phases return a 
good approximation to the modified model when used 
in (10), the model is believed to be an acceptable 
approximation to reality. Though this method involves a 
minimum of numerical modelling, it is only occasionally 
used since the model, the Fourier figure field, is rather 
unmanageable. 

For most structural analyses, a second and more prob- 
lematic modelling is introduced, in which the continuous 
electron distribution is replaced by 'atoms', which have 
their own electron distributions, mean positions in space 
and, usually, some parameters describing their periodic 
displacements from the mean position. The computa- 
tional advantage of such a model is that an atom can 
be represented by about 10 parameters, whereas the 
corresponding volume of a Fourier map, sampled at 
1]3 ]k resolution, would require over 500 values. The 
parameterized model is now rarely determined in detail 
from the corresponding Fourier map (though at one time 
it was); instead, the structure factor is expressed directly 
in terms of the model, 

Fhkz = ~-~fjexp[27ri(hxj + kyj + lzj)], (11) 

and the model parameters are refined by least squares. 

Hybrid techniques are sometimes used, as in sol- 
vent flattening in protein crystallography (Blake, Pul- 
ford & Artymiuk, 1983), disorder modelling by discrete 
Fourier transforms (van der Sluis & Spek, 1990) and 
Bessel-function modelling (Bennett, Hutcheon & Fox- 
man, 1975). 

When a refinement is failing to proceed as expected, a 
most cost-effective method for trying to understand why 
is to examine the corresponding Fourier map in detail. 
If the model is fundamentally correct, then so also will 
be the computed phases. As pointed out above, least- 
squares refinement cannot introduce new parameters 
so, if the model is lacking some atoms, they must 
be sought in the Fourier map or be introduced by 
another technique. In addition, fine features in the map 
may reveal that a simple model with spherical atoms 
'vibrating' harmonically about their mean positions may 
not really represent the actual electron distribution. A 
major problem now is that few analysts have time to 
examine carefully Fourier figure fields; instead, peak 
searches are used. These tend to be rather crude, giving 
little more than the positions of local density maxima and 
conveying almost nothing about topographical details of 
the density [but see, however, recent work by Fortier et 
al. (1993) and much earlier work by Johnson (1977)]. 
Even so, careful use of Fo-, Fo - Fc- and 2Fo - Fc-map 
peak searches can reveal disorder, anharmonic vibration 
and charge redistribution. Whenever a refinement sticks, 
Fourier techniques provide the fundamental tools for 
visualizing the problem. 

(ii) Slant (generalized) Fourier maps 

The complete Fourier map for even quite a small 
structure is likely to be tedious to produce and exam- 
ine. Fortunately, structures that are failing to refine are 
usually doing so because of rather localized problems. 
A good practical approach is to compute the Fourier 
map for just the region in question. Since the analyst 
himself is going to have to interpret the map, his task 
is often simplified by computing the sections so that 
they lie parallel or perpendicular to molecular or physical 
features. The maps need to be carefully contoured and 
then carefully examined for features that cannot be 
explained by the current model. 

(iii) Temperature factors 

Though least-squares refinement has no mechanism 
for introducing new parameters into a model, refinement 
of given parameters to physically unreasonable values 
may give clues about inadequate data processing or the 
need for major changes to the model. 

If temperature factors have been refined for the prob- 
lem structure, they will often reveal the site of trouble 
and sometimes indicate solutions. 
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(1) Isotropic temperature factors (Uiso) too low. Too 
low means very much smaller than might be expected 
in comparison with similar materials at similar tem- 
peratures. Apart from the possibility of errors in the 
atomic form factors, isolated low U~o'S indicate incorrect 
atomic assignments and that an element of higher atomic 
number should be inserted at the site. If all the temper- 
ature factors are low, this may be caused by neglect 
of the 0-dependent part of an absorption correction. 
This situation is particularly common with corrections 
computed by empirical methods based on azimuthal 
scans. These leave a residual error corresponding to a 
cylinder or sphere with radius equal to the minimum 
dimension of the sample. The analyst must check in 
International Tables for X-ray Crystallography (1985) 
that the ratio of the absorption correction at zero and 0max 
for the residual body is less than about 2. If it is greater 
than this, some sort of 0-dependent correction must be 
made. In materials with intrinsically low temperature 
factors (e.g. minerals and metal oxides), neglect of the 0- 
dependent correction often causes the temperature factor 
to go nonpositive definite. Double application of the Lp 
correction or taking square roots of the observations 
twice have similar effects. 

If there is no evidence for errors in the data pro- 
cessing, the analyst must decide for himself what must 
be done about small or negative temperature factors. If 
they are ignored, some attentive referee may seek an 
explanation. If they are set to 'reasonable' values and 
then not refined further, there will always be a nagging 
doubt about the refinement. One solution that may offer 
comfort to the analyst is to restrain the temperature 
factor to currently acceptable values. If the minimization 
function is not seriously perturbed, so that the restraint 
is satisfied, all is well and the explanation is that the 
data do not define the temperature factors in question 
(leaving also the question as to what other parameters 
are not well defined). If the restraint is contravened, then 
the diffraction data do contain information relevant to the 
parameters under scrutiny and the analyst no longer has 
a problem that can be resolved in a general article such 
as this. 

(2) lsotropic temperature factors too large. Again, 
this could be caused by mis-assignment of atom type. 
A fairly high temperature factor may mean that the 
atom is disordered, either positionally or through partial 
occupancy. A very large factor probably means the atom 
is not there at all. The proper strategy for analysing this 
problem is to look carefully at Fourier syntheses, but 
some clues may be made available by trading computer 
time for attention to detail and initiating anisotropic 
refinement. 

(3) Unusual anisotropic temperature factors. Fortu- 
nately, the B and b temperature-factor representations 
are now going out of fashion and are being replaced by 
U's. U's have the advantage of having units of A 2 and 
being independent of cell dimensions. Thus, the diagonal 

components can be directly compared and anomalies 
spotted. However, the ellipsoid is only represented cor- 
rectly by all six unique elements simultaneously and the 
effect of large off-diagonal terms may be difficult to visu- 
alize. The proper procedure for examining temperature 
factors is to extract the principal axes by diagonalizing 
the tensor. Atoms with very small or very large axes or, 
worse still, one small axis and one large axis should be 
suspect. In this latter case, the least-squares refinement 
may be trying to use the available parameters to model 
a more complex situation in which the atoms are really 
disordered over two sites. A confirmation that something 
is wrong may be given by anomalously short bond 
distances to the atom concerned, though this will be less 
evident if several adjacent atoms are all disordered. 

A good improvement to the starting model for this 
kind of disorder is to place a 'half-atom' at each end 
of the longest axis of the anomalous temperature factor. 
Free refinement of these half-atoms will probably not 
work - the half-atoms will try to fuse together again. 
Refinement of this kind of model usually requires re- 
straints or constraints. A frequently successful formula 
is to make the temperature factors of the two half-atoms 
ride (i.e. constrain them to be identical) and restrain 
the bond lengths from the disordered atoms to their 
neighbours. 

Thermal-ellipsoid (ORTEP; Johnson, 1"976) plots are 
invaluable for displaying the relationships between 
atomic temperature factors and should always be 
produced and examined even though some joumals are 
reluctant to publish them. For molecular compounds, 
there are usually fragments that can be regarded as rigid 
bodies, that is, any motion of the atoms in the fragment 
will be correlated since the geometric dispositions of 
the atoms are fixed by the covalent bonds. In this 
situation, the ellipsoids of adjacent atoms should have an 
evident relationship between them. Any large or small 
axes must be explicable in terms of normal intra- and 
intermolecular forces. 

Patterns of correlated motion identified in diagrams 
should be quantified by a TLS calculation (Schomaker & 
Trueblood, 1968). This verifies that the individual atomic 
motions can be represented by coherent motion of the 
fragment as a whole. For small groups of atoms (less 
than about ten), the calculation is rather unstable and 
some experience is needed in interpreting the results. 
Even so, it is a useful diagnostic tool for helping to 
identify atoms whose refinement is anomalous. 

The final question raised by the presence of groups 
of atoms with large but correlated thermal parameters is 
whether they really represent thermal motion or disorder. 
If a definitive answer is important, the only effective 
solution is to examine the same specimen at successively 
reduced temperatures. Disordered atoms will continue to 
have large apparent anisotropy (unless a molecular re- 
ordering occurs at a phase change), while true thermal 
motion will slowly subside as the temperature drops. 
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(iv) Analysis of residuals 

Difference density Fourier maps give a graphical 
representation of residual discrepancies between the ob- 
served and calculated structure factors and so may reveal 
some missing feature of the structure. It is always 
possible that the residuals will not transform into some 
feature recognizable in these maps. If the transform 
of the discrepancies is not interpretable, the residuals 
must be analysed in some other way. Plots of (Fo/F~) 
and (wA 2) versus various criteria may be illuminating. 
Commonly used criteria are IFol and sin (0). The ratio 
Fo/F~ should be about unity for the interval containing 
the median of Fo. 

Ratios less than unity for strong reflections usually 
indicate the need for an 'extinction' correction, though 
this may really be serving to compensate for losses in 
the quantum counting chain. 

Ratios less than unity for weak reflections may in- 
dicate too wide a scan during data collection, so that 
the tails of strong reflections were subtracted from weak 
reflections. This is a real problem for data collected from 
crystals with large cell lengths on diffractometers using 
molybdenum radiation but can sometimes be avoided by 
using an ~ scan rather than an 0J/20 scan. 

Ratios greater than unity for the weak data may 
indicate systematic overestimation of these observations, 
systematic underestimation of strong reflections owing to 
too small a counter aperture or too small a scan width, 
or failure to include solvent. 

Two methods are commonly used for defining the 
Fo intervals. They can be chosen so that each interval 
contains the same number of data, or so that the intervals 
are regularly spaced, often logarithmically. The second 
method is to be preferred, even though some of the 
intervals may contain only a few reflections. Choosing a 
wider interval in order to include a specified number of 
reflections usually means, in the high intensity ranges, 
that reflections differing by orders of magnitude are 
grouped together. An average property of such disparate 
items is probably worthless. A ratio less than unity for 
low-order batches against sin (tg) may indicate that there 
is missing solvent. 

It is also useful to see statistics ranked against each 
index, combinations of indices (e.g. h + k) and par- 
ity group. For a well refined structure with 'correct' 
weights, (wA21 should be constant for all rankings. Two- 
dimensional plots of the ratio Fo/F~ versus h and k, 
h and l, and k and l may reveal problems that are 
directionally dependent, such as inadequate absorption 
corrections. If proper experimental corrections cannot 
be made, the program DIFABS will introduce new pa- 
rameters into the model that can accommodate these 
discrepancies. 

(v) Detection of outliers 

In many branches of physical science, the investigator 
has a good idea about the magnitudes and distribution of 

the data. For example, the observation that a student is 
17 m tall is likely to be in error. The distribution of struc- 
ture amplitudes follows Wilson statistics but individual 
values can vary by several orders of magnitude. Bad 
reflections, outliers, can rarely be seen by inspection. 
Atkinson (1985) devotes a whole book to the problem of 
their detection but most of the remedies are impractical 
in crystallography. 

Nicholson, Prince, Buchanan & Tucker (1982) draw 
attention to methods based on comparing Fo - -Pc with 
crFo and show cases where the method has been very 
fruitful. However, crFo is derived from the same obser- 
vation as Fo so that, if the observation is in gross error, 
so also is the resultant or. A complementary strategy, 
used in CRYSTALS, is to assume that, once a refinement 
is under way, the estimates of an individual Fc are 
reasonably reliable since each -Pc is a complex mean, 
via the model and the structure-factor equation, of all 
the Fo. With normal data, plots of z~ 2 v e r s u s  Fc usually 
follow a smooth curve, which can be represented by 
a simple mathematical function. This curve gives the 
average residual as a function of _Pc and permits one 
to estimate the probable residual for each reflection. 
Reflections with residuals lying well away from this 
estimate are either fundamental to the identification of 
some as-yet-unparameterized feature in the material or 
are very much in error. The probable residual can be 
used much like cr in Nicholson's method and, with care, 
can be used as the basis for a weighting scheme. 

(vi) Refinement against F 2 

With suitable weighting functions, refinement against 
F 2 can arrive at parameters very similar to those from 
a conventional refinement though, with other weights, 
other minima will be achieved. There seem to be a 
number of reasons for using F 2 refinements: 

(1) The standard deviations of F 2 are obtained from 
a linear operation on the standard deviations of the 
intensities so their distribution is not distorted. 

(2) Very weak reflections may be observed with a 
negative net intensity, which can be preserved for the 
refinement. 

(3) The contours of the minimization function are 
different from those of the conventional function so the 
path from a trial model to a final structure is not the 
same (Rollett, McKinlay & Haigh, 1976). These authors 
suggest that Fo 2 refinement may have a wider range 
of convergence than Fo refinement and my experience 
confirms this, providing some care is taken with the 
weighting. Attempts to start refinement with unit or 
simple statistical weighting often diverge explosively. 
This usually seems to occur when some of the strongest 
computed structure factors are in poor agreement with 
the observations. Down-weighting these strong reflec- 
tions, for example using the scheme mentioned above, 
usually controls the divergence. Harris & Moss (1992) 
report the use of F 2 refinement for proteins and conclude 
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there is little to recommend it, and there is some evidence 
[much unpublished, but see Nardelli (1993)] that for 
small molecules the differences between an Fo and 
an Fo 2 refinement are largely insignificant. Even so, 
for small molecules the sometimes increased radius 
of convergence, together with the absence of any real 
disadvantages, suggest that it should be used routinely, 
though not necessarily (for reasons explained above 
in the discussion of the treatment of weak reflections) 
accompanied by the use of all data. 

Problem situations 

(i) Bad or insufficient data 

Sheldrick is reputed to have replied, when asked 
what was the major cause for structures not solving 
easily, 'bad data or the wrong space group'. The same 
answer would probably serve as an explanation for many 
difficult refinements. 

The speed and reliability of automatic search and 
index routines on diffractometers has convinced many 
analysts that they do not need to take conventional X-ray 
photographs of their materials. This may well be true for 
an experienced worker who knows how to use an optical 
microscope and knows how to make the diffractometer 
yield information about crystal quality. However, the 
procedures used by most diffractometers will permit 
data to be collected with really quite dreadful crystals. 
Evidence that the data are of poor quality only emerges 
as the refinement becomes difficult, by which stage the 
analyst may be beginning to lose interest anyway. Data- 
collection strategies will vary for the different classes of 
analysis and good practices have been set out by Hamor, 
Steinfink & Willis (1985). Blessing (1987) has drawn 
attention to extra precautions that need to be taken for 
first-class analyses. Because of the influence of the data 
on the subsequent refinement, some comments must be 
added here. 

Traditionally, errors are treated as random or sys- 
tematic. Random errors can never be removed from an 
experiment, though good design will reduce them. If they 
are such that observations are distributed symmetrically 
about the true value, they will not perturb the resulting 
model but only affect the parameter e.s.d.'s. 

Systematic errors are ones that follow a (perhaps 
undetected) asymmetric pattern and are therefore biased. 
They will lead to both bias in the model and incorrect 
e.s.d.'s. The experimental technique can be improved 
to remove these errors (to reduce absorption errors, a 
small sphere should be used), or corrections can be made 
to the data (Gaussian or Howells-polyhedra absorption 
corrections), or the model can be extended to reflect the 
source and pattern of the bias (DIFABS). 

It is sometimes useful to distinguish a subdivision 
of this second class - gross changes in experimental 
conditions during data acquisition. Occasionally, the 

model can be modified to accommodate the changes 
(e.g. individual scale factors for each sample used in a 
multicrystal data collection). Otherwise, data may have 
to be eliminated (e.g. those collected with the shutter 
partly closed or those suffering from the Renninger 
effect) so that the data that remain come from a single 
experimental regime. 

If data are being collected in reciprocal layers and 
the collection is terminated before all layers, to a given 
resolution, have been collected, some parameters will 
be poorly defined because there is poor leverage on 
them owing to the shortage of data perpendicular to the 
layers. Parameters likely to be affected by this sort of 
experimental shortcoming are positional parameters in 
that direction (which will also have large e.s.d.'s) and 
components of the anisotropic temperature factors. It 
is useful to see positional e.s.d.'s in ~mgstrrms (rather 
than in fractions) since, for a correctly refined good 
data set, they are approximately isotropic. At a recent 
SIR92 workshop, a participant produced a set of data 
that had remained unsolved in his laboratory for several 
years. The structure was solved with SIR92 and passed 
to CRYSTALS for refinement, which stuck at about 
R -- 20%, with curiously elongated thermal ellipsoids and 
positional e.s.d.'s. An examination of the data showed 
that the highest index in one direction had a magnitude of 
about half the corresponding cell length in ~mgstrrms. If 
the data set is going to be large or there is any suspicion 
that the crystals may decay, the reflections should be 
measured in reciprocal-space shells (i.e. over consecutive 
but limited 0 ranges) so that, if the data collection ends 
prematurely, the acquired data will have approximately 
spherical resolution. 

Eliminating strong low-angle data may make it diffi- 
cult to refine an extinction coefficient. Working only with 
high-angle data will not permit H atoms to be properly 
located, since they only diffract well at low angles. 
The procedure for eliminating some data because they 
cannot be properly modelled is difficult and dangerous. It 
assumes that you have correctly identified the deficiency 
in the model (even though you cannot test this) and that 
the effect of the deficiency is restricted to a small part 
of the data. 

(ii) Wrong space group 

For the majority of structure analyses, the space 
group is fairly readily determined from the systematic 
absences and symmetry of the reciprocal lattice. This 
can lead to the belief that space groups are well defined 
features of nature, a belief easily encouraged by the 
enticingly beautiful order and clarity of the diagrams 
in International Tables for Crystallography (1992). A 
much safer approach to the space groups, however, 
might be to think of them as mathematically precise 
points in a continuum; the problem of space-group 
determination then becomes one of deciding which of 
these conventional labels best describes the relationship 
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between the atomic model and the X-ray observations. 
The space group is part of the model. In the absence 
of other evidence, analyses should always be started 
in the most syrnmetric space group. This principle, of 
minimum assumption, is fundamental to contemporary 
science and requires the analyst to seek the simplest 
description that will explain an observed phenomenon. 
Naturally, careful observations often require detailed 
explanations though, sadly, careless experiments also 
invite complex analyses. The role of the space groups 
is to codify exact relationships between parameters and 
in effect replace several by a smaller number plus 
a set of rules for generating the rest. The use of a 
high-symmetry space group can dramatically reduce 
the number of variables in the model and so is an 
economically seductive proposition. During the initial 
stages of analysis, the use of high symmetry and its 
ensuing reduction in computation is quite proper and 
will in general aid in the development of the model. 
Eventually, however, the identity of the space group 
must be reviewed. Often the questioning is cursory 
and the reply intuitive and the assessment of the space 
group made from inspection of the diffraction pattern is 
accepted as correct. In this situation, the analyst is in 
effect saying that he can see no justification in reducing 
the symmetry and increasing the number of independent 
variables. 

An important article by Schomaker & Marsh (1979) 
explains the problems underlying attempts to refine a 
structure in a space group of too low a symmetry. 
The program MISSYM (LePage, 1987) will analyse a 
completed structure for non-space-group symmetry but, 
even when this is detected, its r61e will still need 
evaluating. Baur & Tillmanns (1986) looked again at 
the problem of deciding if the chosen symmetry is too 
low and gave a list of recommendations on how to avoid 
using unnecessarily low symmetry. Their discussion of 
structures taken from the literature shows that some of 
the problems arise mainly from the use of inadequate 
software for the detection of the Laue symmetry. Other 
problems are of a more delicate and perhaps even 
philosophical nature. Those concerning the detection of 
a missing centre of symmetry are of particular interest. 

The inverse problem is also important in the treatment 
of some difficult refinements. What clues, the procedure 
having started with a space group of high symmetry, 
suggest that a lower symmetry is really required? The 
most insistent must be bulk physical effects measured, 
where possible, on the same crystal as used for the X-ray 
analysis. Second-harmonic generation and piezoelectric 
effects are the most convincing, though their failure is no 
evidence for a centre of symmetry. In fact, knowledge of 
the physical properties or provenance of the material will 
often have encouraged the analyst to start the modelling 
in a low-symmetry space group. 

For other cases, the most likely clues come from 
apparent disorder. This may appear as sought-for atoms 

being found at less than their expected electron density 
in Fourier syntheses, as additional unexpected atoms 
appearing, as unacceptably short nonbonded contacts, 
as 'novel' (usually short) bond lengths or as high or 
exceptionally nonsymmetric anisotropic temperature fac- 
tors. Other symptoms include crystallographic R factors 
much higher than the merging R factors. We must note 
in passing that these two quantities are not really related. 
The merging R factor is a measure of the self-consistency 
in the data; the crystallographic R factor (and especially 
the weighted or Hamilton R factor) are measures of the 
fit of the model to the observations. The central limit 
theorem can come to our aid when the data have large 
random errors but are copious. Under these conditions, 
the crystallographic R on merged data will be less than 
the merging R. Dtmitz (1979) has given an analysis 
showing that the weak reflections may be particularly 
sensitive to the absence of a centre of symmetry and 
so has strengthened the argument that weak reflections, 
even if they are not used in the initial refinement, must 
be kept available as witnesses for marginal cases. 

(iii) Strategy for lowering symmetry 

If the physical evidence requires a low-symmetry 
space group, then there is little to be gained by trying 
anything else. In most other situations, it is probably 
most instructive and cost effective to move cautiously 
towards lower symmetry. For example, if one of the 
disquieting features of the high-symmetry model is large 
anisotropic thermal parameters for some atoms, these 
atoms can be replaced by two (or more) part atoms, as 
described above. A good plotting program will enable 
the analyst to see if a 'split' atom is a reasonable 
hypothesis. Least-squares refinement of any dramatically 
changed model should recommence gently and, in this 
case, a single cycle refining only Uiso of the two half- 
atoms would be suitable. In subsequent refinement of 
the positional parameters, it may be found to be neces- 
sary to restrain the distances of the partial atoms from 
neighbouring atoms if there are well known values for 
the bonds, or perhaps restrain the inter-partial-atom sep- 
aration. Often, the restraints can be relaxed or removed 
once the refinement has stabilized. If the model, R factors 
and discrepancy distributions now look satisfactory, the 
refinement can be regarded as complete. 

If some or all of the symptoms of lower symmetry 
persist, then the move must be made. Lowering of 
symmetry can often be achieved by removing either 
one of two operators, the second disappearing when the 
first goes. For example, in P2/m, removing either the 
2 or the m also removes the centre (though removing 
the 2 leaves an achiral space group). At the same 
time, additional atomic coordinates must be generated 
(to replace those originally generated by the symmetry 
operator) and sometimes an origin shift or change of 
axes must be applied if the remaining operators are to 
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be located as shown in International Tables for Crys- 
taUography (1992). When more than one operator is 
available for generating the additional atoms, the one that 
produces a model of physical or chemical significance 
should be chosen. This should not of course affect the 
crystallographic computations but might make it easier 
for the analyst to understand what is happening if the 
refinement fails to proceed well. In general, it would be 
wise not to change the crystal axes even if this means 
working in a nonstandard space group, since the change 
will require at least re-indexing of the reflection data, 
reorientation of the cell parameters and transformation 
of the cell parameter variance-covariance matrix and 
orientation matrix. In addition, the relationship with the 
original model will become obscured. There is, in fact, 
every justification for working with a nonstandard setting 
of a space group if it makes human understanding of the 
situation easier and less error prone. (I remark in p _a_ssing 
that, for dramatic changes of space group, say R3c to 
C2/c, great care needs to be taken and the analyst should 
confirm that the transformed structure gives substantially 
the same R factor as the original structure and that the 
data properly cover the unique part of reciprocal space.) 

The symmetry having been lowered and the refine- 
ment pursued to convergence, it is of course necessary 
to evaluate the solution. Continuous monitoring of the 
literature has revealed that a significant number of struc- 
tures are refined in the wrong space group and most 
common amongst these are cases where the symmetry 
is too low. A common characteristic of too low a 
symmetry is that chemically equivalent bond lengths 
differ by many standard deviations but their mean value 
is quite normal. As noted above (Dunitz, 1979), it is the 
weak reflections that may hold the crucial evidence for 
marginal deviations from centrosymmetric symmetry. 

(iv) Twinning 

The major difficulties that arise when working with 
twinned materials are: 

Determination of unit cell and space group. These 
problems are particularly severe when there are approxi- 
mately equal amounts of each twin component in the 
crystal. When this is not the case, it is often possible to 
pick out a consistent lattice on a set of Weissenberg or 
good precession photographs. 

Data collection. It is generally easiest to work with 
a set of data in which each observation is either a 
fully resolved reflection or a total integration over all 
components falling close to the basis reflection. Par- 
tially overlapping reflections lead to uncertainties in the 
interpretation of the integrated intensity (Rae, 1987). 

Structure solution. Unless some estimate of the rel- 
ative amounts of the twin components can be used 
to provide an approximate resolution of overlapping 
reflections, this stage is likely to prove the most difficult. 

Least-squares refinement. Once a reasonable trial 
model has been obtained, there are a number of programs 

available for its refinement. All of the problems that 
can affect a single-crystal refinement can also beset the 
analysis of twinned crystals. 

A particular form of twinning that appears to be 
quite common and is easily dealt with but sometimes 
overlooked is inversion twinning of chiral materials 
obtained by spontaneous partial resolution of racemic 
mixtures (Flack, 1983). In this case, the material crys- 
tallizes in a noncentrosymmetric space group but the 
crystal contains regions of each isomer. All the reflec- 
tions exactly overlap and the structure can usually be 
solved without unusual problems. However, since each 
reflection contains contributions from Fo+ and Fo-, the 
anomalous differences may be small or even zero if 
there are equal fractions of each twin component. This 
fractional distribution can readily be refined by most 
modem program systems. 

A synthetic example 
Raising the symmetry of a refinement rarely poses any 
serious computational problems (there are sometimes 
practical ones, e.g. origin shifts as well as parameter 
averaging) but lowering the symmetry is usually much 
more problematic. Once the symmetry has been reduced, 
a number of refinement strategies are available. Some 
of the strategies have catastrophic outcomes and so 
should be avoided at all costs. Others lead with differing 
degrees of success to acceptable solutions. The analyst 
is of course restrained by the programs he has available. 
However, most modem programs contain some features 
that can, more or less simply and with more or less 
ingenuity, lead to satisfactory refinements. 

The following example was devised (Watkin, 1986) 
to demonstrate some features of the different procedures 
described above. The known structure of trans-l,4- 
dimethylcyclohexane (P21/c, half a molecule in the 
asymmetric unit) was remodelled into the cis-1,4 isomer 
in P21 with a whole molecule in the asymmetric unit and 
structure factors computed to be used as 'observations' 
in the subsequent analysis. We now have to pretend not 
to know what the structure is, to doubt the systematic 
absences and erroneously to take the space group as 
P21/c. hOI reflections with l odd were eliminated. 

This pseudostructure was solved with SHELXS86 
(Sheldrick, 1985) for half a molecule in the asymmetric 
unit. Isotropic refinement converged at 36%, at which 
point the methyl group, which had a large Uiso, was 
refined anisotropically. This refinement converged at 
19%. Apart from the large R factor, other symptoms of 
a poor refinement were the short C-methyl bond length 
(1.41/~) and the very aspherical methyl temperature 
factor (Fig. 2). 

In accordance with the above suggestions, the methyl 
carbon was replaced by two half-methyl-carbon atoms, 
one at each end of the thermal-ellipsoid long axis, and 
this disordered model was refined isotropically. The final 
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R was 11%. To complete the example, the converged 
isotropic model (R + 36%) was recovered and a second 
half-molecule generated, with all atoms isotropic, using 
the centre of symmetry, and the space group was reduced 
to P21. Several strategies were used to refine this highly 
symmetric starting model. Table 4 records the R factors 
and minimum and maximum C-C bond lengths for each 
refinement. 

(i) Full matrix with Choleski inversion 

Roller remarked, 20 years ago, that some analysts 
were surprised that such a strategy often led to uncon- 
trolled shifts in parameters or singular matrices (Rollett, 
1970). Though the reason was described again in detail 
by Dunitz almost ten years later (Dunitz, 1979), the 
problem continues to surprise beginners. 

The actual behaviour depends upon details of the 
least-squares program. Commonly, the matrix inversion 
proceeds via the Choleski method. If rounding errors 
are large, then the inversion may seem to have been 
successful in that it executes to completion. However, 
the shifts of parameters that were initially equivalent are 
likely to be large and are in any case valueless. The old 
strategy of using partial shift factors to try to contain the 
disruption is sometimes successful but not necessarily 
so. 10% of a calculated shift of 100 A is still a big shift! 
[Shift factors could have a place in structure refinement 
in the hands of sensitive operators (Rollett, McKinlay 
& Haigh, 1976). These authors show that careful use 
of factors greater than unity can be used to accelerate a 
well behaved refinement. There seems to be no evidence 
from the literature that this strategy is in common use.] 
If the computation is to greater precision, smaller shifts 
may be computed for some parameters but eventually 
related parameters become pivots of the method and 
the latent singularities are discovered, and usually the 
corresponding shifts are set to zero. Thus, of a pair of 
originally related parameters, one is modified and the 
other is not. If the analyst is fortunate and the random 
shifts thus applied are sufficiently small and more or less 
in the right direction, further cycles of refinement of the 
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Fig. 2. Structure of pseudo-dimethylcyclohexane at a false minimum. 

now nonsymmetric structure may proceed satisfactorily. 
This is rarely so and the refined structures usually show 
all sorts of curious anomalous geometries. In fact, the 
refinement generally 'blows up'. In this example, the 
R factor rises continuously and bond lengths become 
worthless. 

(ii) Blocked matrix 

The analyst, dismayed at discovering singularities in 
his full-matrix refinement, either refines the related frag- 
ments each in its own matrix block or refines alternate 
fragments in alternate cycles. These techniques differ 
slightly in detail but suffer from the same problems. 
In the first method, the structure factors and derivatives 
are all calculated from the same model and the matrix 
blocks are accumulated at the same time. Used with 
care in well behaved refinements, this is probably the 
most cost-effective method of refining 'medium-sized' 
structures (the definition of 'medium' depends of course 
upon the size and speed of the available computer). In the 
second method, the model is updated after each block of 
atoms has been refined and so different structure factors 
are available for subsequent blocks. For structures not 
showing pseudosymmetry, this latter technique is used 
as the basis for cascade refinement and has been shown 
to be very cost effective on computers with limited 
memory. If there are discrete molecular fragments and 
the analyst is not too concerned with intermolecular 
distances, the method can even be used as a crude 
procedure for fixing origins in polar directions. However, 
in the current situation, both techniques suffer from the 
same catastrophic disadvantage. 

As discussed above, the failure of the full-matrix 
method (normally the safest method of refinement) is 
caused by the latent singularities arising out of 100% 
correlations (except for rounding errors) between the 
original model and the fragment generated by symmetry. 
Partitioning the matrix and discarding the off-diagonal 
elements that relate the two fragments does not cure 
the problem but only blinds the mathematics to it. As a 
result, the refinement seems to proceed satisfactorily and 
no singularities are observed. In fact, in some cases the 
refinement may appear to be chemically satisfactory, par- 
ticularly when the two fragments are whole unconnected 
entities. 

However, in the majority of cases, the refinement is 
unacceptable, with the fragments showing anomalous 
geometries but with average values close to the accepted 
ones. This often becomes particularly evident when the 
two fragments are part of the same molecule and are 
joined across the former symmetry operator. In blocking 
the matrix, the analyst has actually thrown out the infor- 
mation that will eventually, once the model has settled 
down, ensure correct geometries. The serious danger in 
this procedure is that the program cannot give the user 
any warning that all is not well so there is real risk of 
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Table 4. Course of  refinements of  a synthetic data set by different techniques, showing minimum and maximum C-C 
bond lengths 

C - C  distances 
Process used (see text) R factor Minimum Maximum 

Full matrix (Choleski) 35.5 49.9 49.8 49.3 48.8 48.4 47.4 47.4 47.4 0.70 1.78 
Two blocks 35.5 35.9 35.9 36.2 36.3 36.3 36.3 36.3 36.3 1.39 1.53 
Full matrix (limited shifts) 35.5 35.4 35.2 33.4 26.6 14.9 4.6 1.7 1.52 1.52 
Orthogonal coordinates 35.5 31.1 16.3 4.9 1.7 1.52 1.52 
Antiriding constraints 35.5 34.7 15.6 3.9 1.7 1.52 1.52 
Rigid-body constraints 35.5 35.2 26.2 11.9 2.9 2.1 1.52 1.53 
Distance restraints 35.5 35.8 25.9 13.4 7.1 1.8 1.52 1.52 
Eigenvalue filtering 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 1.41 1.52 
Common sense 9.1 1.7 1.52 1.52 

improperly refined structures being published, with little 
readers can do to recognize the situation. In the synthetic 
example, minor anomalies appeared in bond lengths but 
the structure remained approximately pseudosymmetric. 
It is only the high R factor, still over 30%, which 
makes us suspicious. If the pseudosymmetric structure 
had refined to, say, 12%, we might have accepted the 
model and assumed that there was something wrong with 
the data. Blocking the matrix can never be recommended 
as a cure for singularities unless their source is well 
understood. 

(iii) Full matrix with shift-limiting restraints 

In the case we are concerned with here, in which 
the original model has higher symmetry than the 'true' 
structure, the small (but otherwise uncontrolled) shifts 
permitted by shift-limiting restraints may mean that 
eventually the model drifts towards a correct one. The 
matrix then begins to contain terms computed from more 
or less correct derivatives, the shift-limiting restraints are 
over-ridden and the refinement proceeds to an acceptable 
solution. In this case, convergence occurs after eight 
cycles, at R --2%, with a model very close to that used 
to produce the pseudo-observations (Fig. 3). 

The data do contain enough evidence for the original 
structure to be recovered and it is merely the unsat- 
isfactory nature of the normal matrix (because of the 
over-symmetric model) that prevents proper refinement. 
However, this process, though semi-automatic, may be 
rather slow to start converging and, since it depends on 
fortuitous random shifts, cannot really be recommended 

~ 7 

1 c107 c1 

CI[31 C102 

Fig. 3. Structure of pseudo-dimethylcyclohexane at a true minimum. 

except as a method of  last resort. As outlined below, 
there are generally better methods. If the program being 
used permits shift-limiting restraints to be expressed 
explicitly in the same units as the parameter concerned, 
restrictions of about 0.1/~ seem to be workable values. 

(iv) Reparameterization to orthogonal coordinates 

Pairs of new coordinates are defined for refinement 
by least squares, one being the sum and the other the 
difference of the corresponding positional parameters 
of the symmetrically related atoms. The matrix for a 
structure that is exactly pseudosymmetric is still singular 
but, once the structure is perturbed, the refinement 
quickly settles down. Shift-limiting restraints are still 
necessary for the initial computations but they can be 
fairly slack and limiting the shift to be not more than 
one unit cell seems to work well. This means that, once 
the crystallographic derivatives become meaningful, they 
are not unduly damped by the restraint. Convergence is 
achieved in five cycles. 

(v) Anti-riding constraints 

When a structure is refined in a high-symmetry space 
group, the analyst may be applying all sorts of con- 
straints to the solution. These are implicit in the space- 
group symmetry operators, which the model for the total 
contents of the cell must obey. If the analyst believes 
that the bulk of his structure conforms (at the resolution 
of his data) to the higher symmetry and only some 
atoms are in more general positions, he is at liberty 
to refine the structure in the lower-symmetry space 
group and then re-impose selectively the relationships 
previously defined by the space-group operators. These 
relationships can be set up as constraints. In this case, 
we might believe that atoms C(1) to C(3) are very close 
to being centrosymmetrically related to atoms C(101) to 
C(103) and we could impose this belief as anti-riding 
constraints by setting the shift in C(1, x) to be of the 
same size but opposite sign as that in C(101, x) and so on 
for all the pairs of positional parameters of the atoms in 
the central ring. Thus, only one least-squares parameter 
is computed for the shift in C(1, x) and C(101, x), 



430 THE CONTROL OF DIFFICULT REFINEMENTS 

Table 5. Eigenvalues and selected eigenvectors of the normal matrix for the centrosymmetric starting model 

(a) The 12 largest eigenvalues. The remaining 12 have values close to zero 

2.68 2.53 1.37 2.45 1.52 1.57 1.72 2.15 2.01 1.93 1.97 2.02 

(b) Components of the eigenvector corresponding to the first eigenvalue. Parameters are ordered x, y, z for each atom. Entries in 
the second row are centrosymmetrically related to the corresponding entries in the first row 

0.32 --0.02 0.24 0.17 0.02 0.16 0.38 0.01 0.35 -0.10 0.03 --0.03 
-0.32 0.02 --0.24 -0.17 -0.02 -0.16 --0.38 --0.01 -0.35 0.10 -0.03 0.03 

(c) Components of the eigenvector corresponding to the 13th eigenvalue 

0.20 0.63 0.04 0.15 0.03 0.02 0.04 --0.06 --0.06 0.14 0.11 --0.03 
0.20 0.63 0.04 0.15 0.03 0.02 0.04 --0.06 --0.06 0.14 0.11 --0.03 

another for C(1, y) and C(101, y) and so on for all the 
other pairs of parameters. 

Because these are constraints, only three least-squares 
parameters are refined for each atom pair and after the 
matrix work appropriate shifts are applied to the related 
atoms. Formally, this is the same as working in the 
higher-symmetry space group, with the exception that 
the structure factors and derivatives have to be computed 
for all six atoms. The other atoms, the methyl C atoms, 
which through their temperature factors or anomalous 
bond lengths made us suspect lower symmetry, will 
of course be refined without this sort of constraint but 
may be the subject of reparameterization or shift-limiting 
restraints. 

Once the refinement shows signs of stabilizing, the 
anti-riding constraints can be removed and, with mild 
shift-limiting restraints, full-matrix refinement can be 
used to finish off the task in a total of five cycles. 

(vi) Rigid-body constraints 

The centrosymmetric refinement yielded a core struc- 
ture, the cyclohexyl ring, that made chemical sense. 
Another way to proceed to the lower-symmetry structure 
would be to refine the cyclohexyl ring as a rigid body 
with its current geometry and only the methyl groups 
as independent atoms. Replacing the 18 degrees of 
freedom of the core by only six rigid-body parameters 
reduces the number of ways in which the refinement 
can fall into ruin and ensures that the solution makes 
some chemical sense. As with the constrained refinement 
above, the rigid-body constraint should eventually be 
relaxed. Convergence was achieved in six cycles. 

(vii) Distance restraints 

The major problems with the centrosymmetric re- 
finement were the anomalous temperature factor of the 
methyl group and its bond length from the ring C atom. 
The full-matrix refinement revealed its failure by both 
the R factor rising and the quite unacceptable C-C bond 
lengths. This suggests that another approach to a stable 
refinement might be to use bond-length restraints, both 

for the C-methyl bond and also for the bonds in the ring. 
In this example, we can make a well informed guess 
at suitable values. In more general cases, theoretical 
arguments may not provide actual bond lengths but may 
indicate that, by symmetry, bonds should have similar 
lengths. This similarity may be applied as a restraint. 
Convergence was achieved in six cycles. 

(viii) Eigenvalue filtering 

This method provides excellent diagnostics as to 
why the full-matrix refinement failed. Table 5 lists the 
eigenvalues of the scaled normal equations and the 
eigenvectors corresponding to eigenvalues 1 and 13. If 
one remembers that the first four atoms are centrosym- 
metrically related to the second four, it is instructive 
to note that the signs of the second 12 components of 
eigenvector 1 are the opposite of the first 12, while they 
are the same for eigenvector 13. This reveals straight 
away that, while the sums of corresponding parameters 
are well defined, the differences are not, and explains 
why the standard refinement is unstable. It also explains 
why the re-parameterization described above is a useful 
technique. In that case, a rotation was applied in which 
the components of the relevant eigenvectors were exactly 
zero or 21/2/2. 

Fig. 4 (ad hoc plotting program) represents the vari- 
ation of the minimization function, M = ~-~(wA2), as a 
function of the value of C(1, x) and C(101, z). (Note 
that this is a two-dimensional section through a 24- 
dimensional space. Changing any other parameter in 
the model requires us to look at the section parallel 
to the given section but displaced in the direction of 
the perturbed parameter.) The dotted line lies in the 
plane C(1, z) = -C(101, x), so that the minimum for the 
centrosymmetric structure must lie on this line. In this 
case, this minimum is also the local absolute minimum 
in the C(1, x)C(101, z) plane and lies at the bottom 
of a shallow bowl. Movement away from the dotted 
line causes the minimization function to rise, so that 
a centrosymmetric solution for these two parameters 
is best, even when noncentrosymmetric positions are 
available. 
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Fig. 5 is the corresponding contour map and 
shows that the minimum is well defined in the 
C(1, z) + C(101, a:) = 0 direction (centrosymmetric) 
but not at right angles. Small perturbations along this 
direction will not affect the minimization function 
greatly and so are more or less equally acceptable. 

Fig. 6 is a similar representation for C(7, z) and 
C(107, a:). Again, the dotted line contains the minimum 
for the centrosymmetric structure. However, this is at 
a saddle point if the two coordinates are not required 
to vary synchronously; lower minima lie to either side 
of the line. The gradient of the surface perpendicular to 
the symmetry line should be zero for points immediately 
adjacent to the line, so there is no information in the nor- 
mal matrix to tell the calculation to move the parameters 
off one way or the other. In the presence of rounding 
errors, a small gradient may be seen, indicating some 
distant minima, and large spurious shifts are computed. 
Eigenvalue filtering eliminates these spurious shifts. It 
differs from Choleski inversion, which can also trap large 
shifts, in that it recognizes special relationships between 
parameters and preserves these relationships. 

In this example, the normal matrix contains no infor- 
mation at all about what shifts should be applied and the 
structure remains essentially unchanged after ten cycles 
of refinement. This is mathematically correct, though 

Fig. 4. Representation of a section of the minimization function for well 
resolved parameters in pseudo-dimethylcyclohexane. I °r 

/ 

/ 

Fig. 5. Contour map corresponding to Fig. 4. 

naturally disappointing for the hard-pressed analyst hop- 
ing for miracles. The standard Taylor expansion of the 
structure-factor equation and subsequent building of the 
normal matrix involves only the first-order derivatives. 
This helps to increase the range of convergence of the 
method, avoids saddle points and saves the expense of 
computing second derivatives, at the cost of a possibly 
nonquadratic convergence. However, we believe that 
inclusion of second derivatives would give eigenvalue 
filtering the information it needs to determine which 
parameters need to be perturbed and the correlation 
between these perturbations. 

Once the model has been perturbed, the minimization 
surface (which is computed from the model) ceases to 
be symmetric and, if the perturbations are in the correct 
directions, the true minimum appears in the surface and 
the refinement proceeds correctly. We have not seen an 
example of the use of second derivatives in structure 
refinement. 

(ix) C o m m o n  sense  

The split-atom refinement (R -- 11%) could have given 
us a clue about a possible model for the noncentrosym- 
metric space group. As with the ordered model, a second 
half-molecule could be generated using the pseudocentre, 
giving four half-methyl-carbon atoms (two at each end 
of the molecule). Taking a nonequivalent one from each 
pair and restoring it to full occupancy gives a model with 
asymmetric methyl groups. The R factor for this structure 
produced by trivial modelling techniques has a value of 
9% and refines by any valid method in two cycles. The 
game, therefore, in all cases of near pseudosymmetry, 
is to provide the mathematics with as much evidence 
as possible drawn from sources external to the X-ray 
experiment and beating upon noncontroversial issues 
in the analysis, and so permit concentration of the 
information contained in the X-ray data onto the real 
issues under investigation. The risk, of course, is of 
feeding in erroneous or prejudiced opinions. 

Case histories 

The following examples may serve to put the preceding 
discussion into practical perspective. They all have the 

GO ~ . / ~  • 

Fig. 6. Representation of a section of the minimization function for 
pseudosymmetric parameters in pseudo-dimethylcyclohexane. 
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same underlying theme - that least-squares refinement 
takes the model to the nearest local minimum and it is 
therefore necessary to ensure that the starting model is 
close to the global minimum. There is no mathematical 
technique to disclose whether we have discovered the 
global minimum (i.e. have a 'correct' structure already) 
so external information, such as chemical or physical 
respectability, is needed to guide us to the correct 
neighbourhood of the minimization space. In all the 
cases below, simple least-squares refinement converged 
at an incorrect model until additional methods were used 
to improve that model. 

(i) Careful use of Fourier syntheses 

This example illustrates the dangers of not looking 
carefully at Fourier syntheses, or ignoring maxima found 
by peak searches of Fourier maps. 

The material (r/-CsH4CH3)2Mo2S4 is in Cmcm, C2cm 
or Cmc21. The Mo and S atoms were located from a 
Patterson synthesis. A peak search on a Fourier syn- 
thesis yielded a phenyl ligand, in contrast to the ex- 
pected methylcyclopentadienyl group. The peak search 
had shown two small peaks close to the phenyl group 
but, since these made poor bond angles with the central 
skeleton, they had been rejected. Careful consideration 
of the chemistry and discussions with the synthetic 
chemists indicated that, although the R factor stood at 
11%, the ligand could not be as postulated, and the pro- 
posed phenyl-group atoms were removed from the trial 
structure and a new difference synthesis was computed 
in the plane of the ligand and carefully contoured (Fig. 
7). The peaks formerly regarded as spurious were now 
treated as crucial and, using them as anchor points, it was 
easy to fit a doubly disordered methylcyclopentadienyl 
group to the density function (Fig. 8). This model 
was introduced for refinement, using riding temperature 
factors for corresponding atoms, tied occupancies for 
each partial molecule and restraints on the C-C bond 
lengths. Refinement of this chemically acceptable model 
was quite satisfactory and yielded a model that was 
stable even with the restraints removed. The final R was 
3.5% (Prout & Daran, 1978). 

we were coaxed into performing an analysis. The poor 
crystals yielded poor data and we were distressed to see 
that the material crystallized in P21[c, with something 
between six and eight molecules in the asymmetric 
unit (from an estimated density). The small problem 
was now much larger. SHELXS86, MULTAN84 (Main, 
Germain & Woolfson, 1984) and SIR88 all failed, not 
unexpectedly, to give clear solutions, though all yielded 

Fig. 7. Electron-density map in the plane of the disordered methylcyclo- 
pentadienyl ligand. 

(ii) Computer graphics and fragment mapping 

This example was chosen to illustrate that the human 
eye can often recognize molecular fragments in an 
E map that will not develop by simple Fourier or 
least-squares techniques. As fully computerized methods 
develop, they will naturally become the first choice for 
computation but pattern recognition remains a process 
for which the human brain is highly optimized. 

The chemist who made this key 23-atom intermediate 
in a complex organic synthesis had great difficulty 
in obtaining crystals of any sort, in spite of trying 
many different solvents. Eventually, poor crystals were 
obtained and, because of the importance of the material, Fig. 8. Skeletons of two disordered ligands fitted to Fig. 7. 
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maps containing plausible fragments. None of these 
models could be developed by either simple Fourier 
methods or least-squares refinement. Fig. 9, the model 
from SIR88 (though probably other direct-methods mod- 
els would have been equally useful), was introduced 
into a modelling package, CHEMX (Chemical Design 
Ltd, 1990), and the molecular fragments were cleaned 
up by deleting peaks that the user did not like. This 
yielded six partial molecules, which were transferred 
to CRYSTALS and mapped together to form a single 
chemically reasonable structure. This structure was then 
mapped back onto the sites of each of the partial 
structures and, by the use of rigid-body refinement 
and subsequently similarity restraints, the six molecules 
were satisfactorily refined, together with two molecules 
of dichloromethane of solvation. The high degree of 

Fig. 9. E-map peaks for the 138-non-H-atom structure. 

pseudosymmetry is evident in Fig. 10 and may explain 
the difficulties in solving and starting the refinement of 
the structure. 

Even at convergence, the R factor was still 17%, 
but, in view of the large size of the structure and the 
poor quality of the data, the refinement was concluded. 
Some months later, a visitor, intrigued by the problem, 
carefully picked over the difference maps and was able 
to find various other solvent molecules (Einstein, 1988). 
The final R factor is 5%. 

(iii) Regularization and restraints 

This example was chosen to illustrate that, if it is 
evident what the solution should be, it is pointless and 
sometimes fruitless to let blind mathematics try and 
resolve uncertainties. Build the best model as quickly as 
you can, by whatever techniques are available. Do not 
start every structure assuming that there is no scientific 
precedent. 

The material, a boron cluster, had three molecules 
in the asymmetric unit in Pi .  The structure had been 
more or less solved by a colleague in another university 
and was of such a size that it could not be handled 
conveniently by his programs. Fig. 11 is the trial model 
sent to us. We were assured that, despite appearances, 
the ligands should be triphenylphosphine groups. 

Automatic Fourier methods failed to develop the rest 
of the structure and least-squares refinement came to 
nothing. The phenyl groups were regularized and the 
poor boron cluster remodelled using coordinates from 
one of the good molecules. The structure was initially 
refined using rigid groups for each ring and cluster 
and then using bond-length, similarity and rigid-body 
thermal restraints. Most of the restraints were removed 
at the end of the refinement, which had converged to 8 % 
with two molecules of solvation (Fig. 12). 

Fig. 10. Final structure corresponding to Fig. 9, showing six independent 
but pseudotranslationally related molecules. Solvent molecules are 
omitted. 

(iv) Thermal-parameter model building and reparam- 
eterized least-squares refinement 

This example was chosen to illustrate that, just as 
positional parameters need to conform to a realistic 
model, so also do thermal parameters. There is little 
to justify the publication of thermal parameters that 
imply quite implausible bond stretching if the X-ray data 
are equally compatible with a more traditional model. 

Fig. 11. Ill-resolved trial model of the boron cluster compound. 
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It also demonstrates that careful examination of the 
unreasonable results of a 'free' refinement may indicate 
which parameters need substantial revision. 

This material (Fig. 13) diffracted magnificently, giv- 
ing 90% of the data observable with copper radiation 
with I > 3a(I).  It was expected to be chiral, so the struc- 
ture was solved in P1 using SHELXS86. The initial peaks 
are shown in Fig. 14. The obvious interpretation gave 
us much glee, since yet again the chemists' predictions 
seemed to be wrong. It appeared that the expected Cp* 
ligand had been replaced by a second alkaloid group. The 
structure refined to 17%, at which point the ruthenium 
was confirmed as being at a noncrystallographic centre 
of inversion. The space group was changed to Pi and 
the structure displaced so that ruthenium was at the 
origin. This new model, with only half a molecule in 
the asymmetric unit, still gave an R factor of 17% 
but would not refine. Bond lengths were unacceptable 
and some temperature factors were very unreasonable. 

Fig. 12. Final structure of the boron cluster compound. 

Ru 

I 
Fig. 13. Structural formula for the ruthenium compound. 

Fig. 14. E-map peaks for the ruthenium complex. 

The space group was returned to P1 and attempts to 
resolve the structure by Patterson methods and using the 
direct-methods program SIR88 yielded much the same 
pseudosymmetric structure. Even when one ligand was 
deleted and Fourier and difference syntheses computed, 
these consistently revealed the second alkaloid ligand. 
Least-squares refinement was restarted with bond-length, 
rigid-body thermal and shift-limiting restraints, build- 
ing the normal matrix from parameters corresponding 
to sums and differences of pseudocentrosymmetrically 
related parameters. The R factor fell only a little but 
the SNOOPI (Davies & Prout, 1981) plots (Fig. 15) 
showed differences in the temperature factors of the 
two ligands. Note that the bond-length restraints, by 
holding the atoms at chemically reasonable positions, 
encourage the temperature factors of atoms far from 
correct positions to rise, rather than letting the positions 
and thermal parameters adjust to a mutual compromise. 
Which of the two ligands decayed was only a matter of 
chance but was not important at this stage, as no attempt 
was yet being made to determine absolute configuration. 

Atoms with large temperature factors were deleted 
from the model, together with any that were then discon- 
nected and remote from the Ru atom. This left the whole 
of one alkaloid molecule, together with atoms C(2), C(3), 
C(13), C(15), C(17), C(18), C(19), C(20) and C(21) as 
part of a distorted Cp* group (Fig. 15b). 

Structure factors were computed for the now asym- 
metric model and Fourier syntheses computed. The 
alkaloid ligand developed well but the Cp* group was 
still poor and would not refine. An idealized Cp* was 
built and refined isotropically first as a rigid group and 
then with bond-similarity restraints. Subsequent refine- 
ment of the anisotropic temperature factors for the Cp* 
failed, with two methyl and one ring atom going non- 
positive definite. A TLS computation for the remaining 
seven atoms gave a rigid thermal model from which 
temperature factors of the three poor atoms could be 
predicted. This hand-crafted structure was finally refined 
(Fig. 16) to an R factor of 3%. The only restraints 
retained were bond-stretching and temperature-factor- 
similarity restraints on the Cp* group and the PF6-- 
counterion. 

The future 

For small molecular structures (less than 100 atoms), 
there is little incentive to develop alternatives to normal 
matrix least-squares methods for parameter optimization 
of fundamentally correct structures, since the speed of 
computers (in a given price range) increases yearly. For 
larger structures, there are some potential improvements 
and the conjugate-gradient methods being applied to 
proteins may be useful for large 'small' structures. 
The main problem with conjugate-gradient methods is 
that simple implementations cannot take account of 
high correlations between parameters so refinement of 
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'difficult structures' may be slow or may even fail. An 
algorithm recently published for phase refinement and 
giving orders-of-magnitude increases in speed could be 
applied to parameter refinement and may change this 
situation (Main, 1990). Alternatively, direct methods for 
the solution of sparse matrices may become effective. 
The nature of crystallographic observational or nor- 
mal matrices means that in general the distribution of 
significant terms can be predicted and controlled so com- 
putationally efficient sparse equations can be constructed 
and solved. (Note that in general the inverse of a sparse 
matrix is a dense matrix so solution by simple inversion 
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is not efficient.) By careful inclusion of important off- 
diagonal terms, good convergence properties might be 
achieved without undue computational expense (Duff, 
Erisman & Reid, 1989). 

The developments in parallel and array processors and 
in transputers will speed up least-squares calculations. 
Existing programs will probably have to be re-organized 
to make maximum use of these machine architectures, 
though the best of modem optimizing compilers will do 
excellent work on well written code. 

However, what are most urgently needed are auto- 
matic mechanisms for increasing the range of conver- 
gence of refinement processes so that poor (but essen- 
tially correct) initial trial models will not be discarded 
but be brought within the range of traditional methods. 
Molecular mechanics and simulated annealing have done 
this for proteins (X-PLOR; Briinger, 1990). Perhaps 
some altemative to molecular mechanics will be devel- 
oped as a mechanism for generating the pseudorandom 
perturbations needed for simulated annealing to be ap- 
plicable to nonproteins. 

Our experience with the structure solution of cime- 
tidene from powder diffraction data showed how easy 
it can be to discard a useful starting model because 
the molecule assembly routines do not yield a diagram 
recognizable as a chemical structure (Cemik et al., 
1991). The problem is that, if the E-map peaks list 
is expanded to fill a complete trait cell, the diagram 
is likely to be too confused for visual analysis, es- 
pecially if there are substantial numbers of spurious 
peaks. Equally, attempts to assemble a unique molecule 
automatically from the peaks list and using symmetry 
operators can often fail because spurious peaks generate 
false connectivity or absent peaks mean that the chance 
to reposition a fragment is lost. The explosion in the 
availability of inexpensive graphics systems will help 
manual examination of trial structures but a concerted 
effort is needed for the machine analysis of Fourier 
syntheses (Johnson, 1980, pp. 28.01-28.16). 

Fig. 15. The two tentative ligands after positional and isotropic 
temperature-factor refinement. Most of the atoms in (b) were 
eliminated to leave a partial Cp* ligand. Fig. 16. Final structure of the ruthenium compound. 
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The really important issue is to develop computer 
programs that can evaluate complete or partial structures, 
examine them for inconsistencies and features in conflict 
with accepted physics or chemistry, and assess param- 
eter values and e.s.d.'s with respect to the quality and 
quantity of the observed data. To replace, in fact, the 
experienced crystallographer. 

Finally, this article has concerned itself almost wholly 
with molecular structures. There are very exciting chal- 
lenges to be met in the field of inorganic and extended- 
lattice structures, where the problems of pseudosym- 
metry, superlattices and long-range order can be serious, 
space-group uncertainties are almost commonplace and 
there is not too much that can be implied beforehand 
about interatomic distances and angles. 

Concluding remarks 

In many ways, crystallographers are very privileged 
scientists, in that their experiments yield large amounts 
of (generally) good-quality data. Additionally, the nu- 
merical processing of this data often yields unambiguous 
solutions. Even so, the analyst must remain vigilant and 
sceptical of all calculations. If the residual discrepancies, 
IF o I - I F  c I, are large with respect to the estimated errors 
in the data, then the model must be re-assessed, or the 
nature of the errors must be more closely investigated. 

If the final model is at variance with accepted ideas, 
if it is 'novel', it becomes important to verify that a 
less-unusual model is not equally compatible with the 
data (i.e. gives the same weighted residual). This is 
perhaps most conveniently done by using the expected 
features of the model as target values for restraints 
and verifying that the X-ray residual does not increase 
significantly on refinement with these restraints. There 
are currently no programs that automatically generate 
acceptable models, especially in cases of disorder, so the 
analyst is still required to use imagination and experience 
in the interpretation of difficult structures. 

We can expect some imminent generation of computer 
programs to make these checks for us and to have some 
knowledge of physics and chemistry. If the Crystal- 
lographic Information File (CIF) does become widely 
accepted as an archiving medium and the full list of 
required information is filled in reliably by the users 
and their programs, there is a real potential for machine 
screening of deposited results. For the moment, we have 
to depend on care, professionalism and, ultimately, good 
refereeing. 

Most of the procedures described in this article can be 
found in a variety of current program systems. Almost 
all (except simulated annealing) are in the program 
CRYSTALS, which is available from the author. 

I thank the referees for pointing out some errors of fact 
and a number of omissions, Nick Payne for reading the 
original manuscript and Howard Flack for his assistance 
in revising the article. 
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